Brief Articles
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 10 3033
(10) Ferrari, D.; Villalba, M.; Chiozzi, P.; Falzoni, S.; Ricciardi-Castagnoli,
P.; DiVirgilio, F. Mouse microglia cells express a plasma membrane
pore gated by extracellular ATP. J. Immunol. 1996, 156, 1531–1539.
(11) (a) Irnich, D.; Burgstahler, R.; Grafe, P. P2 nucleotide receptors in
peripheral nerve trunk. Drug DeV. Res. 2001, 52, 83–88. (b) Ballerini,
P.; Rathbone, M. P.; Di Iorio, P.; Renzetti, A.; Giuliani, P.;
D’Alimonte, I.; Trubiani, O.; Caciagli, F.; Ciccarelli, R. Rat astroglial
P2Z (P2X7) receptors regulate intracellular calcium and purine release.
NeuroReport 1996, 7, 2533–2537.
(12) (a) Deuchars, S. A.; Atkinson, L.; Brooke, R. E.; Musa, H.; Milligan,
C. J.; Batten, T. F. C.; Buckley, N. J.; Parson, S. H.; Deuchars, J.
Neuronal P2X7 receptors are targeted to presynaptic terminals in the
central and peripheral nervous system. J. Neurosci. 2001, 21, 7143–
7152. (b) Sim, J. A.; Young, M. T.; Sung, H.-Y.; North, R. A.;
Surprenant, A. Reanalysis of P2X7 receptor expression in rodent brain.
J. Neurosci. 2004, 24, 6307–6314. (c) Anderson, C. M.; Nedergaard,
M. Emerging challenges of assigning P2X(7) receptor function and
immunoreactivity in neurons. Trends Neurosci. 2006, 29, 257–262.
(13) Buisman, H. P.; Steinberg, T. H.; Fischbarg, J.; Silverstein, S. C.;
Vogelzang, S. A.; Ince, C.; Ypey, D. L.; Leijh, P. C. Extracellular
ATP induces a large nonselective conductance in macrophage plasma
membranes. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 7988–7992.
(14) Kahlenberg, J. M.; Dubyak, G. W. Mechanisms of caspase-1 activation
by P2X7 receptor-mediated K+ release. Am. J. Cell Physiol. 2004,
286, C1100–C1108.
The above results demonstrate the potential of the acyl
hydrazide pharmacophore to reduce pain transmission and
cytokine production. The efficacy of 5m in the SNL model of
neuropathic pain (Figure 1) is consistent with previous reports
of antinociception using other structurally distinct P2X7 an-
tagonists.24 The mechanistic basis for the analgesic effects has
not been determined, but compound 5m was found to have no
significant interactions for concentrations up to 10 µM at other
P2 receptors (P2X3, P2X4, and P2Y2). In addition, a screen of
compound 5g against a variety of over 70 other receptors,
enzymes, and ion channels revealed no substantial interactions
using a concentration of 10 µM.
Conclusion
We have identified a novel series of acyl hydrazide P2X7
receptor antagonists. Examples of this new pharmacophore
exhibited functional potency using in vitro assays that monitor
distinct steps along the cascade initiated by P2X7 receptor
activation. The SAR studies conducted in this work revealed
preferred substitution patterns for the N′ and acyl termini of
the hydrazide structure. For the N′-aryl moiety, ortho-substituted
phenyl groups produced potent P2X7 receptor antagonists, as
did 5-substituted quinoline ring systems. Replacement of the
N-H bonds in the hydrazide was not tolerated. In the acyl
moiety, rigid polycyclic hydrocarbon ring systems exemplified
by the adamantyl group generated potent antagonist function.
Similarly, acyl groups derived from 1-phenylcyclohexanecar-
boxylic acid imparted a favorable balance of potency and
physicochemical properties. The primary in vitro FLIPR assay
utilized in this study revealed minor discrepancies between
functional potency at the recombinant human and rat receptors,
but certain substitution patterns minimized the differences.
Finally, compound 5m was found to possess antinociceptive
efficacy in a model of neuropathic pain, providing additional
evidence for the potential of the P2X7 receptor as a molecular
target for pain. Compound 5m also reduced the release of the
inflammatory cytokine IL-1ꢀ in a zymosan-induced model of
peritonitis demonstrating that P2X7 receptor antagonists can
inhibit inflammatory pathways.
(15) Perregaux, D.; Gabel, C. A. Interleukin-1 ꢀ maturation and release in
response to ATP and nigericin. Evidence that potassium depletion
mediated by these agents is a necessary and common feature of their
activity. J. Biol. Chem. 1994, 269, 15195–15203.
(16) Walev, I.; Klein, J.; Husmann, M.; Valeva, A.; Strauch, S.; Wittz, H.;
Weichel, O.; Bhakdi, S. Potassium inhibited processing of IL-1ꢀ in
human monocytes. EMBO J. 1995, 14, 1607–1614.
(17) Donnelly-Roberts, D. L.; Namovic, M.; Faltynek, C. R.; Jarvis, M. F.
Mitogen-activated protein kinase and caspase signaling pathways are
required for P2X7 receptor (P2X7R)-induced pore formation in human
THP-1 cells. J. Pharmacol. Exp. Ther. 2004, 308, 1053–1061.
(18) (a) Papp, L.; Vizi, E. S.; Sperla´gh, B. Lack of ATP-evoked GABA
and glutamate release in the hippocampus of P2X7 receptor-/-mice.
NeuroReport 2004, 15, 2387–2391. (b) Duan, S.; Anderson, C. M.;
Keung, E. C.; Chen, Y.; Chen, Y.; Swanson, R. A. P2X7 receptor-
mediated release of excitatory amino acids from astrocytes. J. Neurosci.
2003, 23, 1320–1328.
(19) (a) DiVirgilio, F.; Vishwanath, V.; Ferrari, D. On the role of the P2X7
receptor in the immune system. Handbook Exp. Pharmacol. 2001, 151,
355–374. (b) DiVirgilio, F.; Falzoni, S.; Mutini, C.; Sanz, J. M.;
Chiozzi, P. Purinergic P2X7 receptor: A pivotal role in inflammation
and immunomodulation. Drug. DeV. Res. 1998, 45, 207–213.
(20) (a) LeFeuvre, R. A.; Brough, D.; Touzani, O.; Rothwell, N. J. Role
of P2X7 receptors in ischemic and excitotoxic brain injury in vivo.
J. Cereb. Blood Flow Metab. 2003, 23, 381–384. (b) LeFeuvre, R.;
Brough, D.; Rothwell, N. Extracellular ATP and P2X7 receptors in
neurodegeneration. Eur. J. Pharmacol. 2002, 447, 261–269. (c) Rampe,
D.; Wang, L.; Ringheim, G. E. P2X7 receptor modulation of
ꢀ-amyloid- and LPS-induced cytokine secretion from human mac-
rophages and microglia. J. Neuroimmunol. 2004, 147, 56–61. (d)
Wang, X.; Arcuino, G.; Takano, T.; Lin, J.; Peng, W. G.; Wan, P.;
Li, P.; Xu, Q.; Liu, Q. S.; Goldman, S. A.; Nedergaard, M. P2X7
receptor inhibition improves recovery after spinal cord injury. Nature
Med. 2004, 10, 821–827.
Supporting Information Available: Synthetic procedures and
characterization data for intermediates and final products. Complete
descriptions of biological protocols. This material is available free
References
(21) (a) Raghavendra, V.; DeLeo, J. A. The role of astrocytes and microglia
in persistent pain. AdV. Mol. Cell Biol. 2004, 31, 951–966. (b) Milligan,
E. D.; Maier, S. F.; Watkins, L. R. Review: Neuronal-glial interactions
in central sensitization. Semin. Pain Med. 2003, 1, 171–183.
(22) (a) Labasi, J. M.; Petrushova, N.; Donovan, C.; McCurdy, S.; Lira,
P.; Payette, M. M.; Brissette, W.; Wicks, J. R.; Audoly, L.; Gabel,
C. A. Absence of the P2X7 receptor alters leukocyte function and
attenuates an inflammatory response. J. Immunol. 2002, 168, 6436–
6445. (b) Chessell, I. P.; Hatcher, J. P.; Bountra, C.; Michel, A. D.;
Hughes, J. P.; Green, P.; Egerton, J.; Murfin, M.; Richardson, J.; Peck,
W. L.; Grahames, C. B. A.; Casula, M. A.; Yiangou, Y.; Birch, R.;
Anand, P.; Buell, G. N. Disruption of the P2X7 purinoceptor gene
abolishes chronic inflammatory and neuropathic pain. Pain 2005, 114,
386–396.
(23) (a) Nelson, D. W.; Gregg, R. J.; Kort, M. E.; Perez-Medrano, A.;
Voight, E. A.; Wang, Y.; Namovic, M. T.; Grayson, G.; Donnelly-
Roberts, D. L.; Niforatos, W.; Honore, P.; Jarvis, M. F.; Faltynek,
C. R.; Carroll, W. A. Structure-activity relationship studies on a series
of novel, substituted 1-benzyl-5-phenyltetrazole P2X7 antagonists.
J. Med. Chem. 2006, 49, 3659–3666. (b) Examples of triazole
derivatives of the tetrazole pharmacophore have also been disclosed:
Carroll, W. A.; Kalvin, D. M.; Perez-Medrano, A.; Florjancic, A. S.;
Wang, Y.; Donnelly-Roberts, D. L.; Namovic, M. T.; Grayson, G.;
Honore´, P.; Jarvis, M. F. Novel and potent 3-(2,3-dichlorophenyl)-4-
(1) North, R. A.; Barnard, E. A. Nucleotid receptors. Curr. Opin.
Neurobiol. 1997, 7, 346–357.
(2) Ralevic, V.; Burnstock, G. Receptors for purines and pyrimidines.
Pharmacol. ReV. 1998, 50, 413–492.
(3) Jacobsen, K. A.; Jarvis, M. F.; Williams, M. Purine and pyrimidine
(P2) receptors as drug targets. J. Med. Chem. 2002, 45, 4057–4093.
(4) North, R. A. Molecular physiology of P2X receptors. Physiol. ReV.
2002, 82, 1013–1067.
(5) Burnstock, G. Pathophysiology and therapeutic potential of purinergic
signaling. Pharmacol. ReV. 2006, 58, 58–78.
(6) Gever, J. R.; Cockayne, D. A.; Dillon, M. P.; Burnstock, G.; Ford,
A. P. D. W. Pharmacology of P2X channels. Eur. J. Physiol. 2006,
452, 513–537.
(7) Khakh, B. S.; North, R. A. P2X receptors as cell-surface ATP sensors
in health and disease. Nature 2006, 442, 527–532.
(8) (a) Donnelly-Roberts, D. L.; Jarvis, M. F. Discovery of P2X7 receptor
selective antagonists offers new insights into P2X7 receptor function
and indicates a role in chronic pain states. Br. J. Pharmacol. 2007,
151, 571–579. (b) Gunosewoyo, H.; Coster, M. J.; Kassiou, M.
Molecular probes for P2X7 receptor studies. Curr. Med. Chem. 2007,
14, 1505–1523.
(9) Surprenant, A.; Rassendren, F.; Kawashima, E.; North, R. A.; Buell,
G. The cytolytic P2Z receptor for extracellular ATP identified as a
P2X (P2X7) receptor. Science 1996, 272, 735–738.