5968 Journal of Medicinal Chemistry, 2010, Vol. 53, No. 16
Woodhead et al.
(16) Schulte, T. W.; Neckers, L. M. The benzoquinone ansamycin 17-
allylamino-17-demethoxygeldanamycin binds to HSP90 and
shares important biologic activities with geldanamycin. Cancer
Chemother. Pharmacol. 1998, 42, 273–279.
(31) Leitao, A; Andricopulo, A. O.; Montanari, C. A. The role of
isothermal titration calorimetry in drug discovery and develop-
ment. Curr. Methods Med. Chem. Biol. Phys. 2008, 2, 113–141.
(32) Onuoha, S. C.; Mukund, S. R.; Coulstock, E. T.; Sengerova, B.;
Shaw, J.; McLaughlin, S. H.; Jackson, S. E. Mechanistic studies on
Hsp90 inhibition by ansamycin derivatives. J. Mol. Biol. 2007, 372,
287–297.
(33) Williams, D. A. Drug Metabolism. In Foye’s Principles of Medici-
nal Chemistry, 6th ed.; Lemke, T. L., Williams, D. A., et al. et al., Eds.;
Lippincott Williams and Wilkins: Philadelphia, PA, 2008; pp 253-326.
(34) Madsen, P.; Ling, A.; Plewe, M.; Sams, C. K.; Knudsen, L. B.;
Sidelmann, U. G.; Ynddal, L.; Brand, C. L.; Andersen, B.; Murphy,
D.; Teng, M.; Truesdale, L.; Kiel, D.; May, J.; Kuki, A.; Shi, S.;
Johnson, M. D.; Teston, K. A.; Feng, J.; Lakis, J.; Anderes, K.;
Gregor, V.; Lau, J. Optimization of alkylidene hydrazide based
human glucagon receptor antagonists. Discovery of the highly
potent and orally available 3-cyano-4-hydroxybenzoic acid [1-(2,3,
5,6-tetramethylbenzyl)-1H-indol-4-ylmethylene]hydrazide. J. Med.
Chem. 2002, 45, 5755–5775.
(35) Wu, W.-L.; Burnett, D. A.; Spring, R.; Greenlee, W. J.; Smith, M.;
Favreau, L.; Fawzi, A.; Zhang, H.; Lachowicz, J. E. Dopamine
D1/D5 receptor antagonists with improved pharmacokinetics: de-
sign, synthesis, and biological evaluation of phenol bioisosteric
analogues of benzazepine D1/D5 antagonists. J. Med. Chem. 2005,
48, 680–693.
(36) Ruiz-Garcia, A.; Bermejo, M.; Moss, A.; Casabo, V. G. Pharma-
cokinetics in drug discovery. J. Pharm. Sci. 2008, 97, 654–690.
(37) Sanguinetti, M. C.; Jiang, C.; Curran, M. E.; Keating, M. T. A
mechanistic link between an inherited and an acquired cardiac
arrhythmia: HERG encodes the IKr potassium channel. Cell 1995,
81, 299–307.
(38) Trudeau, M. C.; Warmke, J. W.; Ganetzky, B.; Robertson, G. A.
HERG, a human inward rectifier in the voltage-gated potassium
channel family. Science 1995, 269, 92–95.
(39) Keating, M. T.; Sanguinetti, M. C. Molecular and cellular mechan-
isms of cardiac arrhythmias. Cell 2001, 104, 569–580.
(40) Raschi, E.; Ceccarini, L.; De Ponti, F.; Recanatini, M. hERG-related
drug toxicity and models for predicting hERG liability and QT
prolongation. Expert Opin. Drug Metab. Toxicol. 2009, 5, 1005–1021.
(41) Diller, D. J. In silico hERG modeling: challenges and progress.
Curr. Comput.-Aided Drug Des. 2009, 5, 106–121.
(42) Squires, M. S.; Feltell, R. E.; Wallis, N. G.; Lewis, E. J.; Smith,
D. M.; Cross, D. M.; Lyons, J. F.; Thompson, N. T. Biological
characterization of AT7519, a small-molecule inhibitor of cyclin-
dependent kinases, in human tumor cell lines. Mol. Cancer Ther.
2009, 8, 324–332.
(17) Brough, P. A.; Barril, X.; Borgognoni, J.; Chene, P.; Davies,
N. G.; Davis, B.; Drysdale, M. J.; Dymock, B.; Eccles, S. A.;
Garcia-Echeverria, C.; Fromont, C.; Hayes, A.; Hubbard, R. E.;
Jordan, A. M.; Jensen, M. R.; Massey, A.; Merrett, A.; Padfield,
A.; Parsons, R.; Radimerski, T.; Raynaud, F. I.; Robertson, A.;
Roughley, S. D.; Schoepfer, J.; Simmonite, H.; Sharp, S. Y.;
Surgenor, A.; Valenti, M.; Walls, S.; Webb, P.; Wood, M.;
Workman, P.; Wright, L. Combining hit identification strategies:
fragment-based and in silico approaches to orally active 2-amino-
thieno[2,3-d]pyrimidine inhibitors of the Hsp90 molecular chaper-
one. J. Med. Chem. 2009, 52, 4794–4809.
(18) Eccles, S. A.; Massey, A.; Raynaud, F. I.; Sharp, S. Y.; Box, G.;
Valenti, M.; Patterson, L.; de Haven, B. A.; Gowan, S.; Boxall, F.;
Aherne, W.; Rowlands, M.; Hayes, A.; Martins, V.; Urban, F.;
Boxall, K.; Prodromou, C.; Pearl, L.; James, K.; Matthews, T. P.;
Cheung, K. M.; Kalusa, A.; Jones, K.; McDonald, E.; Barril, X.;
Brough, P. A.; Cansfield, J. E.; Dymock, B.; Drysdale, M. J.;
Finch, H.; Howes, R.; Hubbard, R. E.; Surgenor, A.; Webb, P.;
Wood, M.; Wright, L.; Workman, P. NVP-AUY922: a novel heat
shock protein 90 inhibitor active against xenograft tumor growth,
angiogenesis, and metastasis. Cancer Res. 2008, 68, 2850–2860.
(19) Brough, P. A.; Aherne, W.; Barril, X.; Borgognoni, J.; Boxall, K.;
Cansfield, J. E.; Cheung, K. M.; Collins, I.; Davies, N. G.; Drysdale,
M. J.; Dymock, B.; Eccles, S. A.; Finch, H.; Fink, A.; Hayes,
A.; Howes, R.; Hubbard, R. E.; James, K.; Jordan, A. M.; Lockie,
A.; Martins, V.; Massey, A.; Matthews, T. P.; McDonald, E.;
Northfield, C. J.; Pearl, L. H.; Prodromou, C.; Ray, S.; Raynaud,
F. I.; Roughley, S. D.; Sharp, S. Y.; Surgenor, A.; Walmsley, D. L.;
Webb, P.; Wood, M.; Workman, P.; Wright, L. 4,5-Diarylisoxazole
Hsp90 chaperone inhibitors: potential therapeutic agents for the
treatment of cancer. J. Med. Chem. 2008, 51, 196–218.
(20) Bao, R.; Lai, C. J.; Qu, H.; Wang, D.; Yin, L.; Zifcak, B.; Atoyan,
R.; Wang, J.; Samson, M.; Forrester, J.; DellaRocca, S.; Xu, G. X.;
Tao, X.; Zhai, H. X.; Cai, X.; Qian, C. CUDC-305, a novel syn-
thetic HSP90 inhibitor with unique pharmacologic properties for
cancer therapy. Clin. Cancer Res. 2009, 15, 4046–4057.
(21) Huang, K. H.; Veal, J. M.; Fadden, R. P.; Rice, J. W.; Eaves, J.;
Strachan, J. P.; Barabasz, A. F.; Foley, B. E.; Barta, T. E.; Ma, W.;
Silinski, M. A.; Hu, M.; Partridge, J. M.; Scott, A.; DuBois, L. G.;
Freed, T.; Steed, P. M.; Ommen, A. J.; Smith, E. D.; Hughes, P. F.;
Woodward, A. R.; Hanson, G. J.; McCall, W. S.; Markworth,
C. J.; Hinkley, L.; Jenks, M.; Geng, L.; Lewis, M.; Otto, J.; Pronk,
B.; Verleysen, K.; Hall, S. E. Discovery of novel 2-aminobenz-
amide inhibitors of heat shock protein 90 as potent, selective
and orally active antitumor agents. J. Med. Chem. 2009, 52,
4288–4305.
(43) Leslie, A. G. W.; Brick, P.; Wonacott, A. MOSFLM. Daresbury
Lab. Inf. Q. Protein Crystallogr. 2004, 18, 33–39.
(44) Collaborative Computational Project, No. 4. The CCP4 suite:
programs for protein crystallography. Acta Crystallogr. 1994,
D50, 760-763.
(45) Stebbins, C. E.; Russo, A. A.; Schneider, C.; Rosen, N.; Hartl,
F. U.; Pavletich, N. P. Crystal structure of an Hsp90-geldanamy-
cin complex: targeting of a protein chaperone by an antitumor
agent. Cell 1997, 89, 239–250.
(46) Obermann, W. M.; Sondermann, H.; Russo, A. A.; Pavletich,
N. P.; Hartl, F. U. In vivo function of Hsp90 is dependent on
ATP binding and ATP hydrolysis. J. Cell Biol. 1998, 143, 901–910.
(47) Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Refinement of
macromolecular structures by the maximum-likelihood method.
Acta Crystallogr. D 2004, D53, 240–255.
(22) Lundgren, K.; Zhang, H.; Brekken, J.; Huser, N.; Powell, R. E.;
Timple, N.; Busch, D. J.; Neely, L.; Sensintaffar, J. L.; Yang, Y. C.;
McKenzie, A.; Friedman, J.; Scannevin, R.; Kamal, A.; Hong, K.;
Kasibhatla, S. R.; Boehm, M. F.; Burrows, F. J. BIIB021, an orally
available, fully synthetic small-molecule inhibitor of the heat shock
protein Hsp90. Mol. Cancer Ther. 2009, 8, 921–929.
(23) Blagg, B. S.; Kerr, T. D. Hsp90 inhibitors: small molecules that
transform the Hsp90 protein folding machinery into a catalyst for
protein degradation. Med. Res. Rev. 2006, 26, 310–338.
(24) Drysdale, M. J.; Brough, P. A. Medicinal chemistry of Hsp90
inhibitors. Curr. Top. Med. Chem. 2008, 8, 859–868.
(25) Janin, Y. L. Heat shock protein 90 inhibitors. A text book example
of medicinal chemistry? J. Med. Chem. 2005, 48, 7503–7512.
(26) Sgobba, M.; Rastelli, G. Structure-based and in silico design of
Hsp90 inhibitors. ChemMedChem 2009, 4, 1399–1409.
(48) Roversi, P.; Blanc, E.; Vonrhein, C.; Evans, G.; Bricogne, G.
Modelling prior distributions of atoms for macromolecular refine-
ment and completion. Acta Crystallogr., Sect. D: Biol. Crystallogr.
2000, 56, 1316–1323.
(27) Murray, C. W. Callaghan, O.; Chessari, G.; Congreve, M.; Cowan,
S.; Coyle, J. E.; Downham, R.; Figueroa, E.; Frederickson, M.;
Graham, B.; McMenamin, R.; O’Brien, M. A.; Patel, S.; Phillips,
T. R.; Williams, G.; Woodhead, A. J.; Woolford, A. J.-A.; Frag-
ment-based drug discovery applied to Hsp90. Discovery of two
lead series with high ligand efficiency. J. Med. Chem. DOI: 10.1021/
jm100059d.
(49) Mooij, W. T.; Hartshorn, M. J.; Tickle, I. J.; Sharff, A. J.; Verdonk,
M. L.; Jhoti, H. Automated protein-ligand crystallography for
structure-based drug design. ChemMedChem 2006, 1, 827–838.
(50) Hartshorn, M. J. AstexViewer: a visualisation aid for structure-
based drug design. J. Comput.-Aided Mol. Des. 2002, 16, 871–881.
(51) Emsley, P.; Cowtan, K. Coot: model-building tools for molecular gra-
phics. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60, 2126–2132.
(52) Laskowski, R. A. PDBsum: summaries and analyses of PDB
structures. Nucleic Acids Res. 2001, 29, 221–222.
(28) Murray, C. W.; Rees, D. C. The rise of fragment-based drug
discovery. Nat. Chem. 2009, 1, 187–192.
(29) Prodromou, C; Piper, P. W.; Pearl, L. H. Expression and crystal-
lization of the yeast Hsp82 chaperone, and preliminary X-ray
diffraction studies of the amino-terminal domain. Proteins 1996,
25, 517–522.
(30) Prodromou, C.; Roe, S. M.; O’Brien, R.; Ladbury, J. E.; Piper,
P. W.; Pearl, L. H. Identification and structural characterization of
the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell
1997, 90, 65–75.
(53) Turnbull, W. B.; Daranas, A. H. On the value of c: can low affinity
systems be studied by isothermal titration calorimetry? J. Am.
Chem. Soc. 2003, 125, 14859–14866.
(54) Sigurskjold, B. W. Exact analysis of competition ligand binding by
displacement isothermal titration calorimetry. Anal. Biochem.
2000, 277, 260–266.
(55) McCollum, A. K.; TenEyck, C. J.; Stensgard, B.; Morlan, B. W.;
Ballman, K. V.; Jenkins, R. B.; Toft, D. O.; Erlichman, C.