Q. Li et al. / Tetrahedron Letters 47 (2006) 7699–7702
7701
Table 2. Results of the three-component Mannich-type reaction
J. D.; Wei, H.-X. In Recent Research Developments in
Organic and Bioorganic Chemistry; Transworld Research
Network: Trivandrum, India, 2001; Vol. 4, p 49; (c)
Ciganek, E. Org. React. 1997, 51, 201; (d) Basavaiah, D.;
Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001; (e)
Kataoka, T.; Kinoshita, H. Eur. J. Org. Chem. 2005, 45.
2. (a) Mi, X. L.; Luo, S. Z.; Xu, H.; Zhang, L.; Cheng, J. P.
Tetrahedron 2006, 62, 2537; (b) Katoaka, T.; Kinoshita,
S.; Kinoshita, H.; Fujita, M.; Iwamura, T.; Watanabe, S.
Chem. Commun. 2001, 1958; (c) Shi, M.; Li, C. Q.; Jiang,
J. K. Chem. Commun. 2001, 833; (d) Narender, P.;
Gangadasu, B.; Ravinder, M.; Srinivas, U.; Swamy, G.
Y. S. K.; Ravikumar, K.; Rao, V. J. Tetrahedron 2006, 62,
954; (e) Faltin, C.; Fleming, E. M.; Connon, S. J. J. Org.
Chem. 2004, 69, 6496; (f) Alcaid, B.; Almendros, P.;
Aragoncillo, C. J. Org. Chem. 2001, 66, 1612; (g)
Aggarwal, V. K.; Mereu, A. Chem. Commun. 1999, 2311.
3. For recent aza MBH reaction see: (a) Shi, M.; Li, C. Q.
Tetrahedron: Asymmetry 2005, 16, 1385; (b) Shi, M.;
Chen, L. H.; Li, C. Q. J. Am. Chem. Soc. 2005, 127, 3790;
(c) Shi, M.; Xu, Y. M.; Shi, Y. L. Chem. Eur. J. 2005, 11,
1794; (d) Xu, Y. M.; Shi, M. J. Org. Chem. 2004, 69, 417;
(e) Kawahara, S.; Nakano, A.; Esumi, T.; Iwabuchi, Y.;
Hatakeyama, S. Org. Lett. 2003, 5, 3103.
R2
NH
O
O
ZrCl4, CH2Cl2
-78 oC-r.t.
R1
N
R1
+
+
TMSI
R2
I
1
Entry
R1
R2
C6H5
4-BrC6H4
3-CF3C6H4
C6H5
C6H5
C6H5
C6H5
Product
Yielda,b (%)
1
1
2
3
4
5
6
7
C6H5
C6H5
C6H5
4-ClC6H4
2,4-Cl2C6H3
4-NO2C6H4
EtO2C
1a
1b
1c
1d
1e
1f
97
95
88
84
82
76
38
1g
a Isolated yields.
b The reaction mixture was maintained at À78 ꢁC for 2 h before the
imine and catalysts were added, then warmed to room temperature
for an additional 2 h.
4. (a) Genisson, Y.; Massardier, C.; Gautier-Luneau, I.;
Greene, A. E. J. Chem. Soc., Perkin Trans. 1 1996, 2860;
(b) Kant, J.; Schwartz, W. S.; Fairchild, C.; Gao, Q.;
Huang, S.; Long, B. H.; Kadow, J. F.; Langley, D. R.;
Farina, V.; Vyas, D. Tetrahedron Lett. 1996, 36, 6495; (c)
Dennis, J.-N.; Fkyerat, A.; Gimbert, Y.; Coutterez, C.;
Jost, P.; Greene, A. E. J. Chem. Soc., Perkin Trans. 1 1995,
1811.
5. (a) Chen, D.; Guo, L.; Kotti, S. R. S. S.; Li, G.
Tetrahedron: Asymmetry 2005, 16, 1757; (b) Chen, D.;
Timmons, C.; Liu, J.; Headley, A.; Li, G. Eur. J. Org.
Chem. 2004, 3330; (c) Pei, W.; Wei, H.-X.; Li, G. Chem.
Commun. 2002, 2412; (d) Pei, W.; Wei, H.-X.; Li, G.
Chem. Commun. 2002, 1856; (e) Li, G.; Gao, J.; Wei,
H.-X.; Enright, M. Org. Lett. 2000, 2, 617; (f) Li, G.; Wei,
H.-X.; Caputo, T. D. Tetrahedron Lett. 2000, 41, 1.
6. (a) Li, G.; Wei, H.-X.; Phelps, B. S.; Purkiss, D. W.; Kim,
S. H. Org. Lett. 2001, 3, 823; (b) Timmons, C.; Kattubo-
ina, A.; Banerjee, S.; Li, G. Tetrahedron Lett. 2006, 62,
7151; (c) Timmons, C.; Chen, D.; Cannon, J. F.; Headley,
A. D.; Li, G. Org. Lett. 2004, 6, 2075; (d) Li, G.; Xu, X.;
Chen, D.; Timmons, C.; Carducci, M. D.; Headley, A. D.
Org. Lett. 2003, 5, 329.
7. For recent imine chemistry see: (a) France, S.; Weather-
wax, A.; Taggi, A. E.; Lectka, T. Acc. Chem. Res. 2004,
37, 592; (b) Wipf, P.; Pierce, J. G. Org. Lett. 2005, 7, 3537;
(c) France, S.; Shah, M. H.; Weatherwax, A.; Wack, H.;
Roth, J. P.; Lectka, T. J. Am. Chem. Soc. 2005, 127, 1206.
8. Typical reaction procedures for the synthesis of E-b-
iodovinyl ketone 1a: In a dry vial, under argon protection,
iodotrimethylsilane (85 lL, 0.6 mmol) was added slowly to
a solution of 3-butyn-2-one (47 lL, 0.6 mmol) in 2.0 mL
of dichloromethane at À78 ꢁC. The resulting solution was
stirred for 2 h before 0.1 mmol of catalyst and imine
(91 mg, 0.5 mmol) were charged. The reaction mixture was
maintained at À78 ꢁC for 2.0 h with stirring and allowed
to warmup to room temperature for another 2 h. After
quenching by 1.0 M of aqueous HCl solution (1.0 mL), the
aqueous layer was extracted with EtOAc (3 · 5.0 mL). The
combined organic layers were washed with brine and dried
over anhydrous sodium sulfate. The solvent was removed
under reduced pressure and the residue was purified by
flash chromatography (neutral Al2O3 column, eluent:
CH2Cl2/petroleum ether = 1/2) to provide the pure
product.
The first attempt to perform the Suzuki and Kumada
couplings11,12 were proven unsuccessful, which could
be due to the active NH functional group. This func-
tional group was next protected by treating with benzyl
bromide in refluxing THF in the presence of potassium
carbonate (Scheme 2). After it was protected, these two
cross-couplings proceeded smoothly with phenylboronic
acid and methylmagnesium bromide under the known
conditions as reported by Rault11 and Richards,12 re-
spectively. The corresponding products 3 and 4 were ob-
tained in good yields of 69% and 82%, respectively
(Scheme 3).
In conclusion, a stereoselective three-component Man-
nich-type reaction of imines, 3-butyn-2-one, and TMS-I
using ZrCl4 as the catalyst has been developed. This
reaction provided an easy access to b-branched
Morita–Baylis–Hillman (MBH) amino adducts. The
reaction can be conveniently conducted under concise
conditions. These products can be further subjected to
the metal catalyzed cross-coupling reactions to afford
novel b-alkyl and aryl MBH amino adducts in an
exclusive E-geometric configuration.
Acknowledgements
We thank the State Key Project of Basic Research (Pro-
ject 973) (No. G2000048007), the Robert Welch founda-
tion (US, D-1361), Shanghai Municipal Committee of
Science and Technology (04JC14083), Chinese Academy
of Sciences (KGCX2-210-01), and the National Natural
Science Foundation of China for financial support
(20472096, 203900502, and 20272069).
References and notes
1. For reviews, see: (a) Basavaiah, D.; Rao, A. J.; Satya-
narayana, T. Chem. Rev. 2003, 103, 811; (b) Li, G.; Hook,