Ho et al.
clusters,8 organometallics,8 oxo species,10 and mixed-metal
systems (e.g., with thallium11 and silver),12 phosphine gold(I)
thiolates also demonstrate important luminescence charac-
teristics.13 Indeed, the formation of aurophilic interactions
in solution has been used as a probe for detecting alkali metal
ions.14 Here, a dinuclear phosphine gold thiolate has been
functionalized so that each thiolate ligand carries a macro-
cycle designed for specific coordination to K+. When they
encounter K+, the macrocycles encapsulate the ion in a
sandwich fashion, bringing the two gold atoms in close
proximity which triggers luminescence because of the
formation of an aurophilic (i.e., Au‚‚‚Au) interaction. In
addition to their role in luminescence, aurophilic interactions
play an important role in the supramolecular aggregation
patterns of gold compounds.
bonding interactions and aurophilic interactions, and this
notion inspired the pioneering work of Schmidbaur.16
Therefore, the structural chemistry of gold compounds
attracts great attention that goes well beyond the determi-
nation of molecular structure and constantly reveals many
highlights, such as the formation of luminescent hydrogen-
bonded arrays,17 and investigation of the influence of
temperature dependence,18 polymorphism, and phase transi-
tions19 upon luminescence.
In the present paper, the crystal structures of an unprec-
edented complete series of phosphine gold(I) thiolates (i.e.,
[R3PAu{SC(OMe)dNC6H4NO2-4}], R ) Et, Cy, Ph (1-
3), and [(Ph2P-R-PPh2){AuSC(OMe)dNC6H4NO2-4}2], R )
CH2, (CH2)2, (CH2)3, (CH2)4, Fc (4-8)) are presented, where
the thiolate ligand is derived from O-methyl-N-(4-nitrophe-
nyl)thiocarbamide, SdC(OMe)N(H)C6H4NO2-4.20 Such a
complete series allows for a systematic analysis of the
principles dictating supramolecular aggregation in their
crystal structures, as well as the correlation of their photo-
luminescent properties with the fine-tuning of the weak
Au‚‚‚Au interactions.
Metal complexes derived from related O-alkyl-N-
arylthiocarbamides are known. Neutral forms of these ligands
are known to coordinate gold21 and palladium22 via the thione
sulfur atom. Usually, the ligand is found in the deprotonated
form (i.e., as a carbonimidothioate) and has been shown to
function as a thiolate ligand coordinating gold via the sulfur
atom in [Ph3PAu{SC(OMe)NdPh}],23 related to the present
report. More frequently, the anion coordinates as a S, N
chelate as, for example, in complexes of rhenium24 and
technetium.25 Bridging modes (i.e., µ2 via sulfur and nitro-
gen26 and µ3 via bidentate sulfur and nitrogen)27 have also
been observed in some copper complexes.
Gold complexes are known to exhibit a broad range of
fascinating supramolecular architectures arising from, in
addition to conventional intermolecular forces such as
hydrogen bonding, the formation of the aforementioned
aurophilic interactions.15 Such aurophilic interactions are
known to provide energy of stabilization to structures of the
same order of magnitude as hydrogen-bonding interactions.16
Hence, many supramolecular arrays can be thought of in
terms of complementarity or competition between hydrogen-
(7) (a) Mohamed, A. A.; Burini, A.; Fackler, J. P., Jr. J. Am. Chem. Soc.
2005, 127, 5012. (b). Hayashi, A.; Olmstead, M. M.; Attar, S.; Balch,
A. L. J. Am. Chem. Soc. 2002, 124, 5791. (c) Lin, R.; Yip, J. H. K.;
Zhang, K.; Koh, L. L.; Wong, K.-Y.; Ho, K. P. J. Am. Chem. Soc.
2004, 126, 15852. (d) Chui, S. S.-Y.; Chen, R.; Che, C.-M. Angew.
Chem. 2006, 45, 1621.
(8) Chen, J.; Mohamed, A. A.; Abdou, H. E.; Krause Bauer, J. A.; Fackler,
J. P., Jr.; Bruce, A. E.; Bruce, M. R. M. Chem. Commun. 2005, 1575.
(9) (a) Li, P.; Ahrens, B.; Feeder, N.; Raithby, P. R.; Teat, S. J.; Khan,
M. S. Dalton Trans. 2005, 874. (b) Elbjeirami, O.; Omary, M. A.;
Stender, M.; Balch, A. L. Dalton Trans. 2004, 3173.
(10) Bojan, V. R.; Fernandez, E. J.; Laguna, A.; Lopez-de-Luzuriaga, J.
M.; Monge, M.; Olmos, M. E.; Silvestru, C. J. Am. Chem. Soc. 2005,
127, 11564.
Experimental Section
(11) Fernandez, E. J.; Laguna, A.; Lopez-de-Luzuriaga, J. M.; Elena O.
M.; Perez, J. Chem. Commun. 2003, 1760.
Materials. The chemicals and their sources used in the synthesis
were sodium tetrachloroaurate(III) dihydrate (Aldrich), triethylphos-
phine gold(I) chloride (Strem), tricyclohexylphosphine (Fluka),
triphenylphosphine (Fluka), bis(diphenylphosphino)methane (Al-
(12) (a) Catalano, V. J.; Moore, A. L. Inorg. Chem. 2005, 44, 6558. (b)
Wang, Q.-M.; Lee, Y.-A.; Crespo, O.; Deaton, J.; Tang, C.; Gysling,
H. J.; Gimeno, M. C.; Larraz, C.; Villacampa, M. D.; Laguna, A.;
Eisenberg, R. J. Am. Chem. Soc. 2004, 126, 9488. (c) Colis, J. C. F.;
Staples, R. J.; Tripp, C.; Labrecque, D.; Patterson, H. J. Phys. Chem.
B 2005, 109, 102.
(13) (a) Assefa, Z.; McBurnett, B. G.; Staples, R. J.; Fackler, J. P., Jr.;
Assmann, B.; Angermaier, K.; Schmidbaur, H. Inorg. Chem. 1995,
34, 75. (b) Hanna, S. D.; Khan, S. I.; Zink, J. I. Inorg. Chem. 1996,
35, 5813. (c) Yam, V. W.-W.; Chan, C.-L.; Cheung, K.-K. J. Chem.
Soc., Dalton Trans. 1996, 4019. (d) Tzeng, B.-C.; Chan, C.-K.;
Cheung, K.-K.; Che, C.-M.; Peng, S.-M. Chem. Commun. 1997, 135.
(d) van Zyl, W. E.; Lopez-de-Luzuriaga, J. M.; Fackler, J. P., Jr. J.
Mol. Struct. 2000, 516, 99. (e) Bardaj´ı, M.; Calhorda, M. J.; Costa, P.
J.; Jones, P. G.; Laguna, A.; Reyes Pe´rez, M.; Villacampa, M. D. Inorg.
Chem. 2006, 45, 1059. (f) Yun, S.-S.; Kim, J.-K.; Jung, J.-S.; Park,
C.; Kang, J.-G.; Smyth, D. R.; Tiekink, E. R. T. Cryst. Growth Des.
2006, 6, 899.
(17) Paraschiv, C.; Ferlay, S.; Hosseini, M. W.; Bulach, V.; Planeix, J.-M.
Chem. Commun. 2004, 2270.
(18) Watase, S.; Kitamura, T.; Kanehisa, N.; Nakamoto, M.; Kai, Y.;
Yanagida, S. Chem. Lett. 2003, 32, 1002.
(19) (a) White-Morris, R. L.; Olmstead, M. M.; Balch, A. L.; Elbjeirami,
O.; Omary, M. A. Inorg. Chem. 2003, 42, 6741. (b) White-Morris, R.
L.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2003, 125, 1033.
(c) Gussenhoven, E. M.; Fettinger, J. C.; Pham, D. M.; Malwitz, M.
M.; Balch, A. L. J. Am. Chem. Soc. 2005, 127, 10838.
(20) Ho, S. Y.; Bettens, R. P. A.; Dakternieks, D.; Duthie, A.; Tiekink, E.
R. T. CrystEngComm 2005, 7, 682.
(21) Bardi, R.; Del Pra, A.; Piazzesi, A.; M Sindellari, L.; Zarli, B. Inorg.
Chim. Acta 1981, 47, 231.
(14) (a) Yam, V. W.-W.; Chan, C.-L.; Li, C.-K. Angew. Chem., Int. Ed.
1998, 37, 2857. (b) Li, C.-K.; Lu, X.-X.; Wong, K. M.-C.; Chan, C.-
L.; Zhu, N.; Yam, V. W.-W. Inorg. Chem. 2004, 43, 7421. (c) Li,
C.-K.; Cheng, E. C.-C.; Zhu, N.; Yam, V. W.-W. Inorg. Chim. Acta
2005, 358, 4191. (d) Yam, V. W.-W.; Cheng, E. C.-C. Gold Bull.
2001, 34, 20.
(15) (a) Mingos, D. M. P. J. Chem. Soc., Dalton Trans. 1976, 1163. (b)
Pyykko¨, P. Chem. ReV. 1997, 97, 597. (c) Puddephatt, R. J. Coord.
Chem. ReV. 2001, 216-217, 313.
(16) (a) Schneider, W.; Bauer, A.; Schmidbaur, H. Organometallics 1996,
15, 5445. (b) Tzeng, B.-C.; Schier, A.; Schmidbaur, H. Inorg. Chem.
1999, 38, 3978. (c) Schmidbaur, H. Nature (London) 2001, 413, 31.
(22) Casellato, U.; Fracasso, G.; Graziani, R.; Sindellari, L.; Sa´nchez
Gonza´lez, A.; Nicolini, M. Inorg. Chim. Acta 1990, 167, 21.
(23) Hall, V. J.; Siasios, G.; Tiekink, E. R. T. Aust. J. Chem. 1993, 46,
561.
(24) Rossi, R.; Marchi, A.; Duatti, A.; Magon, L.; Cassellato, U.; Graziani,
R. J. Chem. Soc., Dalton Trans. 1988, 1857.
(25) Rossi, R.; Marchi, A.; Aggio, S.; Magon, L.; Duatti, A.; Cassellato,
U.; Graziani, R. J. Chem. Soc., Dalton Trans. 1990, 477.
(26) Abraham, S. P.; Narasimhamurthy, N.; Nethaji, M.; Samuelson, A.
G. Inorg. Chem. 1993, 32, 1739.
(27) Narasimhamurthy, N.; Samuelson, A. G.; Manohar, H. Chem. Com-
mun. 1989, 1803.
8166 Inorganic Chemistry, Vol. 45, No. 20, 2006