Communications
single step. The transformation of 1a–d into ketones 3a–d
represents a new type of skeletal rearrangement of enynes.
Received: April 21, 2006
Published online: July 19, 2006
Keywords: cyclization · enynes· gold · Prinsreaction ·
.
rearrangements
[1] Reviews of transition-metal-catalyzed reaction of enynes:
a) G. C. Lloyd-Jones, Org. Biomol. Chem. 2003, 1, 215 – 236;
b) C. Aubert, O. Buisine, M. Malacria, Chem. Rev. 2002, 102,
813 – 834; c) S. T. Diver, A. Giessert, Chem. Rev. 2004, 104,
1317 – 1382; d) A. M. Echavarren, C. Nevado, Chem. Soc. Rev.
2004, 33, 431 – 436; e) S. Ma, S. Yu, Z. Gu, Angew. Chem. 2006,
118, 206 – 209; Angew. Chem. Int. Ed. 2006, 45, 200 – 203; f) C.
Nieto-Oberhuber, S. López, E. JimØnez-Nfflæez, A. M. Echavar-
ren, Chem. Eur. J., DOI: 10.10221/chem.200600174.
[2] a) M. MØndez, M. P. Muæoz, A. M. Echavarren, J. Am. Chem.
Soc. 2000, 122, 11549 – 11550; b) M. MØndez, M. P. Muæoz, C.
Nevado, D. J. Cµrdenas, A. M. Echavarren, J. Am. Chem. Soc.
2001, 123, 10511 – 10520; c) C. Nevado, D. J. Cµrdenas, A. M.
Echavarren, Chem. Eur. J. 2003, 9, 2627 – 2635; d) C. Nevado, L.
Charruault, V. Michelet, C. Nieto-Oberhuber, M. P. Muæoz, M.
MØndez, M.-N. Rager, J. P. GenÞt, A. M. Echavarren, Eur. J.
Org. Chem. 2003, 706 – 713.
[3] a) C. Nevado, D. J. Cµrdenas, A. M. Echavarren, Chem. Eur. J.
2003, 9, 2627 – 2635; b) C. Nieto-Oberhuber, M. P. Muæoz, E.
Buæuel, C. Nevado, D. J. Cµrdenas, A. M. Echavarren, Angew.
Chem. 2004, 116, 2456 – 2460; Angew. Chem. Int. Ed. 2004, 43,
2402 – 2406; c) C. Nieto-Oberhuber, S. López, A. M. Echavar-
ren, J. Am. Chem. Soc. 2005, 127, 6178 – 6179; d) C. Nieto-
Oberhuber, S. López, M. P. Muæoz, D. J. Cµrdenas, E. Buæuel, C.
Nevado, A. M. Echavarren, Angew. Chem. 2005, 117, 6302 –
6304; Angew. Chem. Int. Ed. 2005, 44, 6146 – 6148; e) M. P.
Muæoz, J. Adrio, J. C. Carretero; A. M. Echavarren, Organo-
metallics 2005, 24, 1293 – 1300; f) C. Nieto-Oberhuber, S. López,
M. P. Muæoz, E. JimØnez-Nfflæez, E. Buæuel, D. J. Cµrdenas,
A. M. Echavarren, Chem. Eur. J. 2006, 12, 1694 – 1702; g) C.
Nieto-Oberhuber, M. P. Muæoz, S. López, E. JimØnez-Nfflæez, C.
Nevado, E. Herrero-Gómez, M. Raducan, A. M. Echavarren,
Chem. Eur. J. 2006, 12, 1677 – 1693.
Scheme 5. Proposed mechanism for the gold-catalyzed reaction of
enynes 6a–d.
XIV, which undergoes ring expansion to form XV. The
alkenyl gold complex of XV could react with the oxonium
cation to form XVI, which upon demetalation forms tricycles
7a–d by a Prins reaction.[11] The concerted pathway (XIV!
XV) is favored with AuCl as the catalyst, whereas cationic AuI
complexes apparently favor a nonconcerted reaction via
cyclopropyl-stabilized cation XVII,[22] which undergoes a
non-stereospecific ring expansion to give mixtures of 7a–d/
7’a–d.[23] However, as suggested by the dependence of the
stereochemical outcome on the amount of water, we cannot
exclude a pathway in which water opens intermediate XIV to
form an alcohol, followed by a pinacol-type expansion. This
process would result in an overall retention of configuration
to form XV’.
Tricycles 7e/7’e were directly obtained when the synthesis
of 6k was attempted by the cyclopropanation of dienyne 8
with the Furukawa reagent[24] (ꢀ65!238C; Scheme 6). This
result is consistent with the mechanistic hypothesis of
Scheme 5, in which the nonconcerted pathway is favored
with ZnII through intermediates XV’, thus leading to syn,cis
diastereomer 7’e as the major tricycle.
[4] a) V. Mamane, T. Gress, H. Krause, A. Fürstner, J. Am. Chem.
Soc. 2004, 126, 8654 – 8655; b) L. Zhang, S. A. Kozmin, J. Am.
Chem. Soc. 2004, 126, 11806 – 11807; c) M. R. Luzung, J. P.
Markham, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 10858 –
10859; d) see also: A. S. K. Hashmi, M. C. Blanco, E. Kurpe-
jovic, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 709 – 713.
[5] a) H. Hikino, Y. Takeshita, H. Hikino, T. Takemoto, S. Ito,
Chem. Pharm. Bull. 1967, 15, 485 – 489; b) G.-P. Peng, G. Tian,
X.-F. Huang, F.-C. Lou, Phytochemistry 2003, 63, 877 – 881.
[6] H. Akasaka, Y. Shiono, T. Murayama, M. Ikeda, Helv. Chim.
Acta 2005, 88, 2944 – 2950.
Scheme 6. Direct ZnII-promoted cyclopropanation/cyclization of enyne
8.
[7] a) L. Zhang, M. Koreeda, Org. Lett. 2002, 4, 3755 – 3758; T.
Bach, A. Spiegel, Synlett 2002, 1305 – 1307.
In summary, the alkenyl gold intermediate formed in the
cyclization of enynes can be trapped in 5-exo-dig or 6-endo-
[8] a) D. G. Taber, K. J. Frankowski, Org. Lett. 2005, 7, 6417 – 6421;
b) G. Mehta, K. Screenivas, Tetrahedron Lett. 2002, 43, 3319 –
3321; c) E. Piers, A. Orellana, Synthesis 2001, 2138 – 2142; d) S.
Fietz-Razavian, S. Schulz, I. Dix, P. G. Jones, Chem. Commun.
2001, 2154 – 2155.
ꢀ
dig Prins reactions to form an additional C C bond. These
AuI-catalyzed cyclizations of functionalized enynes led to the
ready assemblage of tricyclic carbon skeletons that are
present in a number of naturally occurring compounds.
Thus, for example, tricycle 2c, which possesses the same
skeleton and relative configuration of b-kessyl ketone and
orientalol E (Scheme 2), can be obtained in high yield in a
[9] For an example in which AgI catalyzes an additional process, see:
C. Nevado, A. M. Echavarren, Chem. Eur. J. 2005, 11, 3155 –
3164.
[10] See the Supporting Information for details.
5454
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 5452 –5455