Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
8
Davies, R. L. Giles, C. Grosjean, G. E.DSOmI:i1t0h.1a03n9d/DA0.CWC0h5i6t3in0gH,
Adv. Synth. Catal., 2006, 348, 813–820; (c) K. Arnold, B.
Davies, D. Hérault and A. Whiting, Angew. Chem. Int. Ed.,
2008, 47, 2673–2676; (d) R. M. Al-Zoubi, O. Marion and D. G.
Hall, Angew. Chem. Int. Ed., 2008, 47, 2876–2879; (e) K.
Arnold, A. S. Batsanov, B. Davies and A. Whiting, Green Chem.,
2008, 10, 124–134; (f) N. Gernigon, R. M. Al-Zoubi and D. G.
Hall, J. Org. Chem., 2012, 77, 8386–8400; (g) S. Liu, Y. Yang, X.
Liu, F. K. Ferdousi, A. S. Batsanov and A. Whiting, Eur. J. Org.
Chem., 2013, 5692–5700 (h) S. Fatemi, N. Gernigon and D. G.
Hall, Green Chem., 2015, 17, 4016–4028. (i) T. M. El Dine, W.
Erb, Y. Berhaunt, J. Rouden and J. Blanchet, J. Org. Chem.,
2015, 80, 4532–4544; (j) T. M. El Dine, J. Rouden and J.
Blanchet, Chem. Commun., 2015, 51, 16084–16087. (k) K.
Ishihara and Y. Lu, Chem. Sci., 2016, 7, 1276–1280; (l) K. Wang,
Y. Lu and K. Ishihara, Chem. Commun., 2018, 54, 5410–5413;
(m) Y. Du, T. Barber, S. E. Lim, H. S. Rzepa, I. R. Baxendale and
A. Whiting, Chem. Commun., 2019, 55, 2916–2919.
example of the total synthesis of soraphinol B (18). These
protocols were also applicable to the synthesis of circumcin B
(19)23a and circumcin C (16).23b
In conclusion, we successfully developed a catalytic method
for the synthesis of Weinreb amides derived from - or -
hydroxycarboxylic acids using diboronic acid anhydride as the
catalyst. This distinctive hydroxy-directed amidation reaction is
the first example of the synthesis of Weinreb amides by the
catalytic dehydrative condensation of carboxylic acids with N,O-
dimethylhydroxylamine. This catalytic reaction proceeded in
high to excellent yields with low catalytic loading without
racemization and any dehydration protocols such as the
addition of molecular sieves or azeotropic reflux using a Dean–
Stark apparatus. Its synthetic utility was demonstrated by the
concise syntheses of eight biologically active -hydroxyketone
natural products. Efforts to expand the utility of DBAA catalysis
are currently underway in our laboratory.
9
R. Yamashita, A. Sakakura and K. Ishihara, Org. Lett., 2013, 15,
3654–3657.
This research was supported in part by JSPS KAKENHI Grant
Numbers 19K07000 (N.S.) for Scientific Research (C). We thank
Dr. K. Nagai and Ms. N. Sato at Kitasato University for
instrumental analyses.
10 (a) M. T. Sabatini, L. T. Boulton and T. D. Sheppard, Sci. Adv.,
2017, 3, e1701028; (b) M. T. Sabatini, V. Karaluka, R. M.
Lanigan, L. T. Boulton, M. Badland and T. D. Sheppard, Chem.
Eur. J., 2018, 24, 7033–7043.
11 (a) H. Noda, M. Furutachi, Y. Asada, M. Shibasaki and N.
Kumgai, Nat. Chem., 2017, 9, 571–577; (b) Z. Liu, H. Noda, M.
Shibasaki and N. Kumagai, Org. Lett., 2018, 20, 612–615; (c)
H. Noda, Y. Asada, M. Shibasaki and N. Kumagai, J. Am. Chem.
Soc., 2019, 141, 1546–1554; (d) C. R. Opie, H. Noda, M.
Shibasaki and N. Kumagai, Chem. Eur. J., 2019, 25, 4648–4653.
12 D. N. Sawant, D. B. Bagal, S. Ogawa, K. Selvam and S. Saito,
Org. Lett., 2018, 20, 4397–4400.
Conflicts of interest
The authors declare no competing financial interest.
Notes and references
13 S. Arkhipenko, M. T. Sabatini, A. S. Batsanov, V. Karaluka, T. D.
Sheppard, H. S. Rzepa and A. Whiting, Chem. Sci., 2018, 9,
1058–1072.
14 K. Michigami, T. Sakaguchi and Y. Takemoto, ACS Catal., 2020,
10, 683–688.
15 Selected reviews for substrate-directed reactions, see: (a) A.
H. Hoveyda, D. A. Evans and G. C. Fu, Chem. Rev., 1993, 93,
1307–1370; (b) S. Bhadra and H. Yamamoto, Chem. Rev.,
2018, 118, 3391–3446; (c) T. Sawano and H. Yamamoto, J.
Org. Chem., 2018, 83, 4889–4904.
16 (a) H. Tsuji and H. Yamamoto, J. Am. Chem. Soc., 2016, 138,
14218–14221; (b) W. Muramatsu, H. Tsuji and H. Yamamoto,
ACS Catal., 2018, 8, 2181–2187.
1
S. Nahm and S. M. Weinreb, Tetrahedron Lett., 1981, 22,
3815–3818.
For reviews, see: (a) S. Balasubramaniam and I. S. Aidhen,
Synthesis, 2008, 3707–3738; (b) R. Senatore, L. Ielo, S.
Monticelli, L. Castoldi and V. Pace, Synthesis, 2019, 51, 2792–
2808.
For selected recent examples, see: (a) S. T. Heller, J. N.
Newton, T. Fu and R. Sarpong, Angew. Chem. Int. Ed., 2015,
54, 9839–9843; (b) M. Giannerini, C. Vila, V. Hornillos and B.
L. Feringa, Chem. Commun., 2016, 52, 1206–1209; (c) V. Pace,
I. Murgia, S. Westermayer, T. Langer and W. Holzer, Chem.
Commun., 2016, 52, 7584–7587; (d) G. Parisi, M. Colella, S.
Monticelli, G. Romanazzi, W. Holzer, T. Langer, L. Degennaro,
V. Pace and R. Luisi, J. Am. Chem. Soc., 2017, 139, 13648–
13651; (e) R. Senatore, L. Castoldi, L. Ielo, W. Holzer and V.
Pace, Org. Lett., 2018, 20, 2685–2688; (f) M. Miele, A.
Citarella, N. Micale, W.Holzer and V. Pace, Org. Lett., 2019, 21,
8261–8265.
2
3
17 N. Shimada, M. Hirata, M. Koshizuka, N. Ohse, R. Kaito and K.
Makino, Org. Lett., 2019, 21, 4303–4308.
18 See details in Electronic Supplementary Information (ESI).
19 P. Hoyos, J.-V. Sinisterra, F. Molinari, A. R. Alcántara and P. D.
De María, Acc. Chem. Res., 2010, 43, 288–299.
20 Y. Hayashi, Chem. Sci., 2016, 7, 866–880.
4
5
For a review, see: J. Kalepu and L. Pilarski, Molecules, 2019,
24, 830–851.
21 For the synthesis of sattabacins, see: (a) M. R. Aronoff, N. A.
Bourjaily, and K. A. Miller, Tetrahedron Lett., 2010, 51, 6375–
6377; (b) K. Bailadi, A. Talakokkula and A. V. Narsaiah, Arkivoc,
2019, vi, 167–173.
For selected examples, see: (a) J. C. S. Woo, E. Fenster and G.
R. Dake, J. Org. Chem., 2004, 69, 8984–8986; (b) K. Hiroki, H.
Kobayashi, R. Ohkihara, S. Tani and M. Kunishima, Chem.
Pharm. Bull., 2004, 52, 470–472; (c) T. Niu, W. Zhang, D.
Huang, C. Xu, H. Wang and Y. Hu, Org. Lett., 2009, 11, 4474–
4477; (d) E. Morisset, A. Chardon, J. Rouden and J. Blanchet,
Eur. J. Org., 2020, 388–392.
For selected reviews, see: (a) V. R. Pattabiraman and J. W.
Bode, Nature, 2011, 480, 471–479; (b) H. Lundberg, F. Tinnis,
N. Selander and H. Adolfsson, Chem. Soc. Rev., 2014, 43,
2714–2742; (c) R. M. de Figueiredo, J.-S. Suppo and J.-M.
Campagne, Chem. Rev., 2016, 116, 12029–12122.
K. Ishihara, S. Ohara and H. Yamamoto, J. Org. Chem., 1996,
61, 4196–4197.
22 For the synthesis of kurasoins, see: (a) R. Uchida, K. Shiomi, T.
Sunazuka, J. Inokoshi, A. Nishizawa, T. Hirose, H. Tanaka, Y.
Iwai and S. Ōmura, J. Antibiot., 1996, 49, 886–889; (b) M. B.
Andrus, E. J. Hicken, J. C. Stephens and D. K. Bedke, J. Org.
Chem., 2006, 71, 8651–8654; (c) S. Tsuchiya, T. Sunazuka, T.
Shirahata, T. Hirose, E. Kaji and S. Ōmura, Heterocycles, 2007,
72, 91–94; (d) R. A. Fernandes, Tetrahedron: Asymmetry,
2008, 19, 15–18; (e) M. A. Christiansen, A. W. Butler, A. R. Hill
and M. B. Andrus, Synlett, 2009, 653–657.
6
7
23 For the synthesis of soraphinol A and circumsins, see: (a) E. P.
Balskus and C. T. Walsh, J. Am. Chem. Soc., 2008, 130, 15260–
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins