Page 5 of 6
Journal of the American Chemical Society
9 Gao, H.; Xu, Q.-L.; Ess, D. H.; Kürti, L. Transition-Metal-Free, Low-
16
For electrophilic phosphonium-catalyzed methods, see: (a) Caputo,
C. B.; Hounjet, L. J.; Dobrovetsky, R.; Stephan, D. W. Lewis Acidity of
Organofluorophosphonium Salts: Hydrodefluorination by a Saturated
Acceptor. Science 2013, 341, 1374. (b) Bayne, J. M.; Stephan, D. W.
Phosphorus Lewis Acids: Emerging Reactivity and Applications in Catal-
ysis. Chem. Soc. Rev. 2016, 45, 765.
1
2
3
4
5
6
7
8
Temperature Intramolecular Amination of Aromatic C-H Bonds: Rapid
Synthesis of Fused Heterocycles.” Angew. Chem. Int. Ed. 2014, 53, 2701.
10
Rauser, M.; Ascheberg, C.; Niggemann, M. Electrophilic Amination
with Nitroarenes. Angew. Chem. Int. Ed. 2017, 56, 11570.
11 (a) Nykaza, T. V.; Harrison, T. S.; Ghosh, A.; Putnik, R. A.; Radose-
vich, A. T. A Biphilic Phosphetane Catalyzes N−N Bond-Forming Ca-
dogan Heterocyclization via PIII/PV=O Redox Cycling. J. Am. Chem. Soc.
2017, 139, 6839. (b) Nykaza, T. V.; Ramirez, A.; Harrison, T. S.; Luzung,
M. R.; Radosevich, A. T. Biphilic Organophosphorus-Catalyzed Intramo-
lecular Csp2-H Amination: Evidence for a Nitrenoid in Catalytic Cadogan
Cyclizations. J. Am. Chem. Soc. 2018, 140, 3103.
17
Attempted use of other reported phosphacyclic catalysts in the
PIII/PV=O literature proved less effective (Table S3).
18
Pompeo, M.; Farmer, J. L.; Froese, R. D. J.; Organ, M. G. Room‐
Temperature Amination of Deactivated Aniline and Aryl Halide Partners
with Carbonate Base Using a Pd‐PEPPSI‐IPentCl_ o‐Picoline Catalyst.
Angew. Chem. Int. Ed. 2014, 126, 3287.
9
12
19
(a) Cadogan, J. I. G.; Cameron-Wood, M.; Mackie, R. K.; Searle, R.
(a) Trinus, F. P.; Mokhort, N. A.; Yagupol'skii, L. M.; Fadeicheva,
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
J. G. 896. The Reactivity of Organophosphorus Compounds. Part XIX.
Reduction of Nitro-Compounds by Triethyl Phosphite: A Convenient New
Route to Carbazoles, Indoles, Indazoles, Triazoles, and Related Com-
pounds. J. Chem. Soc. 1965, 0, 4831. (b) Cadogan, J. I. G. Reduction of
Nitro- and Nitroso-Compounds by Tervalent Phosphorus Reagents. Q.
Rev. Chem. Soc. 1968, 22, 222.
A. G.; Danilenko, V. S.; Ryabukha, T. K.; Fialkov, Y. A.; Kirichek, L. M.;
Endel'man, ꢀ. S.; Get'man, G. A. Mefenamic acid—A nonsteroid anti-
inflammatory agent. Pharm. Chem. J. 1977, 11, 1706. (b) Rao, B.; Zeng,
X. Aminocyanation by the Addition of N–CN Bonds to Arynes: Chemose-
lective Synthesis of 1,2-Bifunctional Aminobenzonitriles. Org. Lett. 2014,
16, 314.
13 For a review of PIII/PV=O redox cycling, see: Marsden, S. P. Catalytic
Variants of Phosphine Oxide-Mediated Organic Transformations in Sus-
tainable Catalysis; Dunn, P. J., Hii, K. K., Krische, M. J., Williams, M.
T., Eds.; John Wiley & Sons, Inc.: New York, 2013; pp 339−361.
20 (a) Brown, H. C.; Kim, K. W.; Cole T. E.; Singaram, B. J. Am. Chem.
Soc. 1986, 108, 6761. (b)Matteson, D. S.; Kim, G. Y. Asymmetric Al-
kyldifluoroboranes and Their Use in Secondary Amine Synthesis. Org.
Lett. 2002, 4, 2153. (c) Bagutski, V.; Elford, T. G.; Aggarwal, V. K. Syn-
thesis of Highly Enantioenriched C-Tertiary Amines from Boronic Esters:
Application to the Synthesis of Igmesine. Angew. Chem. Int. Ed., 2011,
50, 1080. (d) Mlynarski, S. N.; Karns, A. S.; Morken, J. P. Direct Steros-
pecific Amination of Alkyl and Aryl Pinacol Boronates J. Am. Chem. Soc.
2012, 134, 16449.
14
For recent examples of PIII/PV=O redox cycling, see: (a) O’Brien, C.
J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkel, S. R.;
Przeworski, K. C.; Chass, G. A. Recycling the Waste: The Development
of a Catalytic Wittig Reaction Angew. Chem. Int. Ed. 2009, 48, 6836. (b)
O’Brien, C. J.; Lavigne, F.; Coyle, E. E.; Holohan, A. J.; Doonan, B. J.
Breaking the Ring through a Room Temperature Catalytic Wittig Reaction
Chem. Eur. J. 2013, 19, 5854. (c) O’Brien, C. J.; Nixon, Z. S.; Holohan,
A. J.; Kunkel, S. R.; Tellez, J. L.; Doonan, B. J.; Coyle, E. E.; Lavigne, F.;
Kang, L. J.; Przeworski, K. C. Part I: The Development of the Catalytic
Wittig Reaction Chem. Eur. J. 2013, 19, 15281. (d) Coyle, E. E.; Doonan,
B. J.; Holohan, A. J.; Walsh, K. A.; Lavigne, F.; Krenske, E. H.; O’Brien,
C. J. Catalytic Wittig Reactions of Semi- and Nonstabilized Ylides Ena-
bledby Ylide Tuning Angew. Chem. Int. Ed. 2014, 53, 12907. (e) van
Kalkeren, H. A.; Leenders, S. H. A. M.; Hommersom, C. R. A.; Rutjes, F.
P. J. T.; van Delft, F. L. In Situ Phosphine Oxide Reduction: A Catalytic
Appel Reaction Chem. Eur. J. 2011, 17, 11290. (f) van Kalkeren, H. A.;
Bruins, J. J.; Rutjes, F. P. J. T.; van Delft, F. L. Organophosphorus-
Catalysed Staudinger Reduction Adv. Synth. Catal. 2012, 354, 1417. (g)
Zhao, W.; Yan, P. K.; Radosevich, A. T. Phosphetane catalyzes deoxy-
genative condensation of α-keto esters and carboxylic acids via PIII/PV=O
redox cycling. J. Am. Chem. Soc. 2015, 137, 616. (h) Lee, C.; Chang, T.;
Yu, J.; Reddy, G. M.; Hsiao, M.; Lin, W. Synthesis of functionalized
furans via chemoselective reduction/Wittig reaction using catalytic tri-
ethylamine and phosphine. Org. Lett. 2016, 18, 3758. (i) Saleh, N.; Voi-
turiez, A. Synthesis of 9H-pyrrolo[1,2-a]indole and 3H-pyrrolizine deriva-
tives via a phosphine-catalyzed umpolung addition/intramolecular Wittig
reaction. J. Org. Chem. 2016, 81, 4371. (j) Saleh, N.; Blanchard, F.; Voi-
turiez, A. Synthesis of nitrogen containing heterocycles and cyclopente-
none derivatives via phosphine catalyzed Michael addition/intramolecular
Wittig reaction. Adv. Synth. Catal. 2017, 359, 2304. (k) Zhang, K.; Cai,
L.; Yang, Z.; Houk, K. N.; Kwon, O. Bridged [2.2.1] bicyclic phosphine
oxide facilitates catalytic γ-umpolung addition−Wittig olefination. Chem.
Sci. 2018, 9, 1867.
15
For redox-neutral phosphine oxide organophosphorus-catalyzed
methods: Aza-Wittig (a) Campbell, T.W.; Monagle, J.J. A New Synthesis
of Mono- and Polycarbodiimides. J. Am. Chem. Soc. 1962, 84, 1493. (b)
Marsden, S. P.; McGonagle, A. E.; McKeever-Abbas, B. Catalytic aza-
Wittig Cyclizations for Heteroaromatic Synthesis. Org. Lett. 2008, 10,
2589. (c) Wang, L.; Qin, R.-Q.; Yan, H.-Y.; Ding, M.-W. New Efficient
Synthesis of 1,4-Benzodiazepin-5-Ones by Catalytic Aza-Wittig Reaction.
Synthesis 2015, 47, 3522. Appel: (d) Denton, R. M.; An, J.; Adeniran, B.
Phosphine Oxide-Catalysed Chlorination Reactions of Alcohols under
Appel Conditions. Chem. Commun. 2010, 46, 3025. (e) Denton, R. M.;
An, J.; Adeniran, B.; Blake, A. J.; Lewis, W.; Poulton, A. M. Catalytic
Phosphorus(V)-Mediated Nucleophilic Substitution Reactions: Develop-
ment of a Catalytic Appel Reaction. J. Org. Chem. 2011, 76, 6749. (f) An,
J.; Tang, X.; Moore, J.; Lewis, W.; Denton, R. M. Phosphorus(V)-
Catalyzed Deoxydichlorination Reactions of Aldehydes. Tetrahedron
2013, 69, 8769. (g) Yu, T.-Y.; Wang, Y.; Xu, P.-F. An Unusual Tri-
phenylphosphine Oxide Catalyzed Stereoselective 1,3-Dichlorination of
Unsaturated Ketoesters. Chem. Eur. J. 2014, 20, 98.
ACS Paragon Plus Environment