4228
K. N. Singh et al. / Bioorg. Med. Chem. Lett. 22 (2012) 4225–4228
Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471. and references
therein.
8. For excellent reviews on iminium catalysis, see: (a) Lelais, G.; MacMillan, D. W.
C. Aldrichimica Acta 2006, 39, 79; (b) Erkkilä, A.; Majander, I.; Pihko, P. M. Chem.
Rev. 2007, 107, 5416.
9. For reviews on enamine-SOMO catalysis, see: (a) Bertelsen, S.; Nielsen, M.;
Jorgensen, K. A. Angew. Chem., Int. Ed. 2007, 46, 7356; (b) Beeson, T. D.;
Mastracchio, A.; Hong, J.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316,
582; (c) Jang, H.; Hong, J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2007, 129, 7004;
(d) Sibi, M. P.; Hasegawa, M. J. Am. Chem. Soc. 2007, 129, 4124; (e) Kim, H.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2008, 130, 398.
10. (a) Hong, B.; Wu, M.; Tseng, H.; Liao, J. Org. Lett. 2006, 8, 2217; (b) Bertelsen, S.;
Marigo, M.; Brandes, S.; Dinir, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128,
12973.
11. For reviews on asymmetric 1,4-conjugate addition reactions, see: (a) Berner, O.
M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 1877, 2002; (b) Tsogoeva, S. B. Eur.
J. Org. Chem. 2007, 1701; (c) Vicario, J. L.; Badía, D.; Carillo, L. Synthesis 2007,
2065; (d) Almasi, D.; Alonso, D. A.; Nájera, C. Tetrahedron: Asymmetry 2007, 18,
299; (e) Roca-Lopez, D.; Sadaba, D.; Delso, I.; Herrera, R. P.; Tejero, T.; Merino,
P. Tetrahedron: Asymmetry 2010, 21, 2561.
12. (a) Calderari, G.; Seebach, D. Helv. Chim. Acta 1995, 58, 1592; (b) Sibi, M. P.;
Manyem, S. Tetrahedron 2000, 56, 8033; (c) Ono, N. The Nitro Group in Organic
Synthesis; Wiley-VCH: New York, 2001; (d) Christoffers, J.; Baro, A. Angew.
Chem., Int. Ed. 2003, 42, 1688; (e) Czekelius, C.; Carreira, E. M. Angew. Chem., Int.
Ed. 2005, 44, 612.
the nitro-olefin to approach from the Re-face to give the major
enantiomer. Meanwhile, the secondary NH group present in 8
activates and orientates the nitro-olefins through hydrogen bond-
ing.24,25 This also explains the failure of reaction in polar protic
solvents like MeOH and EtOH which may inhibit the enamine for-
mation or the subsequent hydrogen bonding in A. In catalyst 1,
replacing (R)-a-methyl benzylamine with (S)- or racemic a-methyl
benzylamine had no effect on the yield and stereoselectivity of the
reaction, thus indicating that this chiral centre plays no significant
role. Finally, it seems to be the combined effect of steric factors and
intermolecular hydrogen bonding which leads to the higher stere-
oselectivity in the reaction and furnish the S, R- product.26
In conclusion, we have developed a simple and effective chiral
diamine organocatalyst for the direct asymmetric Michael addi-
tions of cyclic ketones to nitroolefins. Further applications of this
organocatalyst in other reactions are being investigated.
Acknowledgments
13. (a) Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org.
Biomol. Chem. 2005, 3, 84; (b) Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.;
Tanaka, F.; Barbas, C. F., III Synthesis 2004, 1509; (c) Huang, H.; Jacobsen, E. N. J.
Am. Chem. Soc. 2006, 128, 7170; (d) Cao, C. L.; Ye, M. C.; Sun, X. L.; Tang, Y. Org.
Lett. 2006, 8, 2901; (e) Jiang, X. X.; Zhang, Y. F.; Chan, A. S. C.; Wang, R. Org. Lett.
2009, 11, 153; (f) Wang, C.; Yu, C.; Liu, C. L.; Peng, Y. G. Tetrahedron Lett. 2009,
50, 2363; (g) Liu, J.; Yang, Z. G.; Liu, X. H.; Wang, Z.; Liu, Y. L.; Bai, S.; Lin, L. L.;
Feng, X. M. Org. Biomol. Chem. 2009, 7, 4120; (h) Maya, V.; Singh, V. K. Org. Lett.
2007, 9, 1117; (i) Kokotos, C. G.; Limnios, D.; Triggidou, D.; Trifonidou, M.;
Kokotos, G. Org. Biomol. Chem. 2011, 9, 3386; (j) Tsakos, M.; Kokotos, C. G. Eur. J.
Org. Chem. 2012, 576.
We acknowledge financial support vide scheme no. 01(2138)/
07/EMR-II from CSIR, New Delhi, India. S. K. Sharma is thankful
to DST, New Delhi for providing research fellowship (DST/INSPIRE
fellowship/2011/150).
Supplementary data
Supplementary data associated with this article can be found, in
14. Pansare, S. V.; Kirby, R. L. Tetrahedron 2009, 65, 4557.
15. Kelleher, F.; Kelly, S.; Watts, J.; McKee, V. Tetrahedron 2010, 66, 3525.
16. Yu, C.; Qiu, J.; Zheng, F.; Zhong, W. Tetrahedron Lett. 2011, 52, 3298. No
explanation for the increase in enantioselectivity with increase in pKa value in
the side chain is offered; see also Ref. 14.
References and notes
17. (a) Bahmanyar, S.; Houk, K. N. J. Am. Chem. Soc. 2001, 123, 12911; (b) Wang, J.;
Li, H.; Lou, B.; Zu, L.; Guo, H.; Wang, W. Chem. Eur. J. 2006, 12, 4321.
18. The pKa values of 1 and 2 were calculated using the SPARC software: Hilal, S.;
Karickhoff, S. W.; Carreira, L. A. Quant. Struct. Act. Relat. 1995, 14, 348. http://
19. Pettit, R. G.; Singh, S. B.; Herald, D. L.; Williams, P. L.; Kantoci, D.; Burkett, D. D.;
Barkóczy, J.; Hogan, F.; Wardlaw, T. R. J. Org. Chem. 1994, 59, 6287.
20. Maya, V.; Raj, M.; Singh, V. K. Org. Lett. 2007, 9, 2593.
1. For selected reviews on organocatalysis, see: (a) Dalko, P. I.; Moisan, L. Angew.
Chem., Int. Ed. 2004, 43, 5138; (b) Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3,
719; (c) List, B.; Yang, J. W. Science 2006, 313, 1584; (d) Enders, D.; Grondal, C.;
Hüttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570; (e) Pellissier, H.
Tetrahedron 2007, 63, 9267; (f) MacMillan, D. W. C. Nature 2008, 455, 304; (g)
Dondoni, A.; Massi, A. Angew. Chem., Int. Ed. 2008, 47, 4638; (h) Enders, D.;
Wang, C.; Liebich, J. X. Chem. Eur. J. 2009, 15, 11058; (i) Chai, Z.; Zhao, G. Catal.
Sci. Technol. 2012, 2, 29.
21. Asami, M.; Ohno, H.; Kobayashi, S.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1869,
1978, 51.
2. Jain, S. L.; Modak, A.; Bhaumik, A. Green Chem. 2011, 13, 586.
3. Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., III J. Am. Chem. Soc. 2001, 123, 5260.
4. List, B.; Pojarlieve, P.; Martin, H. J. Org. Lett. 2001, 3, 2423.
22. Saha, S.; Seth, S.; Moorthy, J. N. Tetrahedron Lett. 2010, 51, 5281.
23. Seebach, D.; Golinski, J. Helv. Chim. Acta 1981, 64, 1413.
5. (a) Fustero, S.; Moscardo, J.; Jimenez, D.; Peerez-Carrion, M. D.; Sanchez-
Rosesllo, M.; del Pozo, C. Chem. Eur. J. 2008, 14, 9868; (b) de Figueiredo, R. M.;
Christmann, M. Eur. J. Org. Chem. 2007, 16, 2575; (c) Zu, L.; Xie, H.; Li, H.; Wang,
J.; Wang, W. Adv. Synth. Catal. 2007, 349, 2660; (d) Tsakos, M.; Kokotos, C. G.
Adv. Synth. Catal. 2012, 354, 740.
24. (a) Pansare, S. V.; Lingampally, R. Org. Biomol. Chem. 2009, 7, 319; (b) Xu, D. Q.;
Xia, A. B.; Luo, S. P.; Tang, J.; Zhang, S.; Jiang, J. R.; Xu, Z. Y. Angew. Chem., Int. Ed.
2009, 48, 3821; (c) Xu, D. Q.; Wang, L. P.; Luo, S. P.; Wang, Y. F.; Zhang, S.; Xu, Z.
Y. Eur. J. Org. Chem. 2008, 1049; (d) Chen, J.-R.; Fu, L.; Zou, Y.-Q.; Chang, N.-J.;
Rong, J.; Xiao, W.-J. Org. Biomol. Chem. 2011, 9, 5280.
6. For selected reviews on asymmetric aminocatalysis, see: (a) List, B. Chem.
Commun. 2006, 819; (b) Barbas, C. F., III Angew. Chem., Int. Ed. 2008, 47, 42; (c)
Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008,
47, 6138; (d) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178; (e)
Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 1360; (f) Yang, H.; Carter, R. G.
Synlett 2010, 2827.
7. For reviews on chiral amines as enamine catalysts, see: (a) List, B. Acc. Chem.
Res. 2004, 37, 548; (b) Notz, W.; Tanaka, F.; Barbas, C. F., III Acc. Chem. Res. 2004,
37, 580; (c) Guillena, G.; Ramón, D. J. Tetrahedron: Asymmetry 2006, 17, 1465;
(d) Marigo, M.; Jørgensen, K. A. Chem. Commun. 2001, 2006; (e) Mukherjee, S.;
25. Although in some publications (Ref. 24a,c,d) the plausible transition state is
shown to involve both oxygen atoms of the nitro group in the hydrogen
bonding, in this case it seems more rational to propose transition state A in
which only one oxygen atom of nitro group forms a hydrogen bond. Such a
transition state has been supported on the basis of theoretical calculations as
well as stereochemical aspects: (a) Yalalov, D. A.; Tsogoeva, S. B.; Schmatz, S.
Adv. Synth. Catal. 2006, 348, 826; (b) Ref. 13i.
26. The configuration of chiral centres in 7 was assigned as on the basis of
comparison of retention times in chiral HPLC with those reported in
literature.13i,16,22