further allowed the determination of thermodynamic data of the
self-assembly system by applying van’t Hoff analysis.{ The
negative signs of the obtained DS = 2156 ¡ 9 J mol21 K21
and DH = 264 ¡ 3 kJ mol21 show that the dimerization of 1 is
enthalpy driven.
The authors acknowledge the support, by a postdoctoral
position for L. S., of the Center for Functional Nanostructures
(CFN) of the Deutsche Forschungsgemeinschaft (DFG) within
´
project C3. We are thankful to Ekaterina Rakhmatullina, Marcel
Mu¨ri and Sergio Grunder for their support in the analytical
investigations.
Notes and references
1 (a) D. Zhao and J. S. Moore, Chem. Commun., 2003, 807; (b) S. Ho¨ger,
J. Polym. Sci., Part A: Polym. Chem., 1999, 37, 2685.
2 (a) J. Zhang and J. S. Moore, J. Am. Chem. Soc., 1992, 114, 9701; (b)
A. S. Shetty, J. Zhang and J. S. Moore, J. Am. Chem. Soc., 1996, 118,
1019.
Fig. 3 Chemical shift changes with concentration of the exo-annular (&)
and endo-annular ($) protons of 1 in CDCl3 at 20 uC. The solid lines are
the simulated chemical shifts with KDim = 1875 M21
.
3 S. Ho¨ger, K. Bonrad, A. Mourran, U. Beginn and M. Mo¨ller, J. Am.
Chem. Soc., 2001, 123, 5651.
4 Y. Tobe, N. Utsumi, A. Nagano and K. Naemura, Angew. Chem., Int.
Ed., 1998, 37, 1285.
5 Y. Tobe, N. Utsumi, K. Kawabata, A. Nagano, K. Adachi, S. Araki,
M. Sonoda, K. Hirose and K. Naemura, J. Am. Chem. Soc., 2002, 124,
5350.
6 C.-H. Lin and J. Tour, J. Org. Chem., 2002, 67, 7761.
7 K. Nakamura, H. Okubo and M. Yamaguchi, Org. Lett., 2001, 3, 1097.
8 C. T. Lui Ma and M. J. MacLachlan, Angew. Chem., Int. Ed., 2005, 44,
4178.
9 C. R. Patrick and G. S. Prosser, Nature, 1960, 187, 1021.
10 (a) W. J. Feast, P. W. Lo¨venich, H. Puschmann and C. Taliani, Chem.
Commun., 2001, 505; (b) S. W. Watt, C. Dai, A. J. Scott, J. M. Burke,
R. L. Thomas, J. C. Collings, C. Viney, W. Clegg and T. B. Marder,
Angew. Chem., Int. Ed., 2004, 43, 3061; (c) F. Ponzini, R. Zagha,
stacking of macrocycle 1 in the solid state of the anthracene triol
matrix in the MALDI-TOF MS. Furthermore, the structural
motif has been reported to photopolymerize in the solid state,12a
and thus these oligomeric structures may even be covalently-linked
macrocycles formed by photoreactions during ionization. The
solubility of macrocycle 1 is limited to aprotic organic solvents, e.g.
toluene and THF, and is improved in chlorinated solvents like
chloroform or dichloromethane. However, even in chloroform, the
solution is saturated by about 25 mmol L21, also pointing to
distinctive intermolecular interactions.
Of particular interest were the stacking properties of macrocycle
1 in solution, which were investigated by concentration dependent
1H NMR experiments and by vapor pressure osmometry (VPO).
Inthe concentration range between 0.5 and 11 mmol L21 in CDCl3,
both proton signals of the benzene unit shift asymptotically
towards higher field with increasing concentration (Fig. 3).{ The
upfield shift indicates a face-to-face aggregation of 1, as reported
for the self-associationofSPMs due to p–pstacking interactions.2–7
The signal of the exo-annular protons shifts 0.4 ppm, more
pronounced than the 0.3 ppm for the endo-annular protons in the
investigated concentration range at 20 uC. While the intended
strong intramolecular p–p stacking interaction was confirmed by
the NMR titration experiments, it remained uncertain whether
dimers or larger oligomeric stacks were formed in solution.
Only a small concentration window, limited by the sensitivity of
the VPO equipment on the one hand and by the solubility of 1 on
the other, remained open for VPO investigations. Thus, in the
concentration range between 15 and 25 mmol L21, in which,
according to the NMR titration experiments, mainly stacked
objects are present, an average molecular weight of 2000 ¡ 500
was determined by VPO in CHCl3 at room temperature. The
measured molecular weight supports the formation of dimers in
K. Hardcastle and J. S. Siegel, Angew. Chem., Int. Ed., 2000, 39, 2323;
/
ˇ
(d) M. Gdaniec, W. Jankowski, M. J. Milewska and T. Polonski,
Angew. Chem., Int. Ed., 2003, 42, 3903; (e) V. R. Vangala, A. Nangia
and V. M. Lynch, Chem. Commun., 2002, 1304.
11 L. Shu, Z. Mu, H. Fuchs, L. Chi and M. Mayor, Chem. Commun.,
2006, 1862.
12 (a) G. W. Coates, A. R. Dunn, L. M. Henling, D. A. Dougherty and
R. H. Grubbs, Angew. Chem., Int. Ed. Engl., 1997, 36, 248; (b)
G. W. Coates, A. R. Dunn, L. M. Henling, J. W. Ziller, E. B. Lobkovsky
and R. H. Grubbs, J. Am. Chem. Soc., 1998, 120, 3641.
13 M. J. Marsella, Z.-Q. Wang, R. J. Reid and K. Yoon, Org. Lett., 2001,
3, 885.
14 M. Weck, A. R. Dunn, K. Matsumoto, G. W. Coates, E. B. Lobkovsky
and R. H. Grubbs, Angew. Chem., Int. Ed., 1999, 38, 2741.
15 A. F. M. Kilbinger and R. H. Grubbs, Angew. Chem., Int. Ed., 2002, 41,
1563.
16 (a) G. Mathis and J. Hunziker, Angew. Chem., Int. Ed., 2002, 41, 3203;
(b) A. Zahn, C. Brotschi and C. J. Leumann, Chem.–Eur. J., 2005, 11,
2125.
17 (a) M. Mayor and C. Didschies, Angew. Chem., Int. Ed., 2003, 42, 3176;
(b) J. Kro¨mer, I. Rios-Carreras, G. Fuhrmann, C. Munsch,
M. Wunderlin, T. Debaerdemaeker, E. Mena-Osteritz and P. Ba¨uerle,
Angew. Chem., Int. Ed., 2000, 39, 3481; (c) M. Mayor and J.-M. Lehn,
J. Am. Chem. Soc., 1999, 121, 11231.
18 (a) W. Chodkiewicz, Ann. Chim. (Paris), 1957, 13(2), 819; (b) N. Ghose
and D. R. M. Walton, Synthesis, 1974, 890.
19 E. J. Corey and P. L. Fuchs, Tetrahedron Lett., 1972, 36, 3769.
20 K. Sonogashira, in Metal-Catalyzed Cross-Coupling Reactions, ed.
F. Diederich and P. J. Stang, Wiley-VCH, Weinheim, 1998, pp. 203.
21 (a) K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett.,
1975, 37, 4467; (b) J. Wityak and J. B. Chan, Synth. Commun., 1991, 21,
977.
22 Aggregation of amphiphilic SPMs during MALDI-TOF MS investiga-
tions has already been reported by: S. Ho¨ger, J. Spickermann,
D. L. Morrison, P. Dziezok and H. J. Ra¨der, Macromolecules, 1997,
30, 3110.
1
solution, as sketched in Fig. 1. The H NMR titration data were
thus fitted assuming a monomer–dimer equilibrium,23 in similarity
with the already reported investigations of SPM model com-
pounds.2–6 The obtained dimerization constant (KDim) for 1 was
1875 ¡ 605 M21 in CDCl3 at 20 uC, more than one order of
magnitude larger than those reported for SPMs consisting of
uniform aromatic sub-units. The temperature dependence of KDim
23 I. Horman and B. Dreux, Helv. Chim. Acta, 1984, 67, 754.
4136 | Chem. Commun., 2006, 4134–4136
This journal is ß The Royal Society of Chemistry 2006