to give bicyclic ketones.8 We also found that unsaturated
ketone 1a could undergo similar domino Michael-aldol
reaction with acetone when pyrrolidine was used as a catalyst
(Scheme 1, eq 1).9 However, the regioselectivity of the
Table 1. Evaluation of Catalysts for the Aldol Reaction of 1a
and Acetonea
Scheme 1. Regioselective Reaction of 1a and Acetone
catalyst
(mol %)
time,
h
conversion,b
%
ee,c
%
entry
3a/2ab
1
2
3
4
5
6
7
8
9
4 (30)
5 (5)
6 (30)
7 (5)
8 (20)
9 (20)
10 (20)
11 (20)
10 (10)
10 (10)
10 (10)
10 (10)
2
2
52
52
3
3
1
28
4
3
100
100
22
>95:5d
>95:5
>95:5
81:19
83:17
86:14
96:4
67
49
68
57
59
63
72
14
75e
87f
92f,g
94f,h
reaction could be changed by using different organocatalyst.
In the presence of L-proline the reaction of 1a and acetone
gave the corresponding 1,2-addition product with quantitative
yield and moderate enantioselectivity (Scheme 1, eq 2).
Notably, it was the first organocatalytic reaction in which
unsaturated ketone underwent aldol reaction as acceptor
instead of the usual Michael reaction as previously reported.10
We began our investigation with the reaction of acetone
and unsaturated ketone 1a. A variety of L-proline derivatives
were tested as catalysts to improve the enantioselectivity of
the reaction. As shown in Table 1, although tetrazole 511a,b,d
could also catalyze the aldol reaction efficiently, the decrease
in enantioselectivity was observed (Table 1, entry 2). Using
hydroxy proline 611c as catalyst gave the desired product in
14
100
100
100
50
100
100
100
48
98:2
>95:5
>95:5
>95:5
>95:5
10
11
12
6
8
a Experimental conditions: 1a (0.2 mmol) was added to a solution of
catalyst in acetone (1 mL) at room temperature. b Determined by 19F NMR
analysis of crude reaction mixture. c Determined by HPLC. d Only aldol
product 3a was observed. e 10 mol % acetic acid was added. f 10 mol %
TFA was added. g Reaction performed at 0 °C. h Reaction performed at
-20 °C.
(4) (a) Sosnovskikh, V. Y.; Ovsyannikov, I. S.; Aleksandrova, I. A. J.
Org. Chem. USSR (Engl. Transl.) 1992, 28, 420-426. (b) Soloshonok, V.
A.; Avilov, D. V.; Kukhar, V. P. Tetrahedron 1996, 52, 12433-12442. (c)
Soloshonok, V. A.; Kacharov, A. D.; Avilov, D. V.; Ishikawa, K.;
Nagashima, N.; Hayashi, T. J. Org. Chem. 1997, 62, 3470-3479. (d)
Funabiki, K.; Isomura, A.; Yamaguchi, Y.; Hashimoto, W.; Matsunaga,
K.; Shibata, K.; Matsui, M. J. Chem. Soc., Perkin Trans. 1 2001, 2578-
2582. (e) Barten, J. A.; Funabiki, K.; Roschenthaler, G. V. J. Fluorine Chem.
2002, 113, 105-109. For enantiomerical synthesis of trifluoromethyl tertiary
alcohols from trifluoromethyl ketones, see: (f) Pierce, M. E.; Parsons, R.
L., Jr.; Radesca, L. A.; Lo, Y. S.; Silverman, S.; Moore, J. R.; Islam, Q.;
Choudhury, A.; Fortunak, J. M. D.; Nguyen, D.; Morgan, C.; Luo, S. J.;
Davis, W. P.; Confalone, P. N.; Chen, C.-Y.; Tillyer, R. D.; Frey, L.; Tan,
L.; Xu, F.; Zhao, D.; Thompson, A. S.; Corley, E. G.; Grabowski, E. J. J.;
Reamer, R.; Reider, P. J. J. Org. Chem. 1998, 63, 8536-8543. (g) To¨ro¨k,
B.; Abid, M.; London, G.; Esquibel, J.; To¨ro¨k, M.; Mhadgut, S. C.; Yan,
P.; Prakash, G. K. S. Angew. Chem., Int. Ed. 2005, 44, 3086-3089.
(5) (a) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000,
122, 2395-2396. (b) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386-
7387. (c) List, B.; Pojarliev, P.; Castello, C. Org. Lett. 2001, 3, 573-575.
(d) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., III J. Am. Chem. Soc.
2001, 123, 5260-5267. (e) Pidathala, C.; Hoang, L.; Vignola, N.; List, B.
Angew. Chem. 2003, 115, 2891-2894; Angew. Chem., Int. Ed. 2003, 42,
2785-2788. For reviews, see: (f) List, B. Synlett 2001, 1675-1686. (g)
List, B. Tetrahedron 2002, 58, 5573-5590. (h) List, B. Acc. Chem. Res.
2004, 37, 548-557. (i) Notz, W.; Tanaka, F.; Barbas, C. F., III Acc. Chem.
Res. 2004, 37, 580-591.
low conversion and similar ee as using L-proline (Table 1,
entry 3). A dramatic decrease in both yield and selectivity
was obtained when amide 7 was tested (Table 1, entry 4).
Further evaluation of several proline-derived N-sulfonyl-
amides11d,e showed compound 10 to be optimal, giving the
highest enantioselectivity and good regioselectivity (Table
1, entries 5-7). Addition of acids along with catalyst 10
(9) For organocatalytic domino Micheal-aldol reaction, see: (a) Eder,
U.; Sauer, G.; Wiechert, R. Angew. Chem. 1971, 83, 492-493; Angew.
Chem., Int. Ed. Engl. 1971, 10, 496-497. (b) Hajos, Z. G.; Parrish, D. R.
J. Org. Chem. 1974, 39, 1615-1621. (c) Halland, N.; Aburel, P. S.;
Jørgensen, K. A. Angew. Chem. 2004, 116, 1292-1297; Angew. Chem.,
Int. Ed. 2004, 43, 1272-1277. (d) Pukkinen, J.; Aburel, P. S.; Halland, N.;
Jørgensen, K. A. AdV. Synth. Catal. 2004, 346, 1077-1080.
(10) (a) Melchiorre, P.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 4151-
4157. (b) Hechavarria Fonseca, M. T.; List, B. Angew. Chem. 2004, 116,
4048-4050; Angew. Chem., Int. Ed. 2004, 43, 3958-3960. (c) Peelen, T.
J.; Chi, Y.-G.; Gellman, S. H. J. Am. Chem. Soc. 2005, 127, 11598-11599.
(d) Chi, Y.-G.; Gellman, S. H. Org. Lett. 2005, 7, 4253-4256. (e) Wang,
J.; Li, H.; Zu, L.; Wang, W. AdV. Synth. Catal. 2006, 348, 425-428.
(11) (a) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamatoto, H.
Angew. Chem., Int. Ed. 2004, 43, 1983-1986. (b) Hartikka, A.; Arvidsson,
P. I. Tetrahedron: Asymmetry 2004, 15, 1871-1934. (c) Tang, Z.; Yang,
Z. H.; Hua, X. H.; Cun, L. F.; Mi, A. Q.; Yao, Y. Z.; Gong, L. Z. J. Am.
Chem. Soc. 2005, 127, 9285-9289. (d) Cobb, A. J. A.; Shaw, D. M.;
Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3,
84-96. (e) Berkessel, A.; Koch, B.; Lex, J. AdV. Synth. Catal. 2004, 346,
1141-1146.
(6) Qiu, L.; Shen, Z.; Shi, C.; Liu, Y.; Zhang, Y. Chin. J. Chem. 2005,
23, 584-588.
(7) Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis;
Pergamon Press: Oxford, UK, 1992.
(8) (a) Andrew, R. J.; Mellor, J. M.; Reid, G. Tetrahedron 2000, 56,
7255-7260. (b) Nenajdenko, V. G.; Druzhinin, S. V.; Balenkova, E. S.
Russ. Chem. Bull., Int. Ed. 2004, 53, 435-442.
1344
Org. Lett., Vol. 9, No. 7, 2007