5296
O. L. Malovichko et al. / Bioorg. Med. Chem. Lett. 16 (2006) 5294–5297
Table 1. Biological properties of RGDF mimetics 3a, 3b, 4a, 4b and 9a–9h
Compound
Antiaggregative activity,
in vitro assays on human PRP, IC50 (nM)
Inhibition of FITC-Fg binding to aIIbb3
on the surface of human activated platelets, IC50 (nM)
a
a
3a
3b
4a
4b
9a
9b
9c
9d
9e
9f
2750.0 ( 370.0)9
860.0 ( 120.0)9
30.0 ( 1.6)10
13.0 ( 1.0)10
78.0 ( 6.5)
14.0 ( 2.1)9
8.3 ( 1.4)9
1.2 ( 0.14)10
1.0 ( 0.12)10
9.0 ( 0.56)
1.0 ( 0.41)
0.8 ( 0.07)
0.7 ( 0.07)
32.0 ( 2.2)
8.0 ( 0.6)
25.0 ( 1.7)
17.0 ( 1.6)
11.6 ( 1.3)
2300.0 ( 160.0)
710.0 ( 39.0)
450.0 ( 41.0)
340.0 ( 23.0)
9g
9h
5.0 ( 0.4)
3.7 ( 0.4)
a Values are means of three experiments, standard deviation is given in parentheses.
The compounds 9 have demonstrated a high in vitro
antiaggregative activity in bioassays on a human
platelet-rich plasma (PRP) (Table 1) by Born’s meth-
od12,13 in blood obtained from at least three donors.
Platelet aggregation was induced by ADP. In order
to reveal the molecular mechanism of antiaggregatory
action of RGDF mimetics 9, their influence on spe-
cific binding of fluoresceinisothiocyanate-labeled
fibrinogen (FITC-Fg) to aIIbb3 (in a suspension of
human washed platelets) was examined by the proce-
dure.14,15 FITC-Fg obtained by the method16 specifi-
cally bound to platelet receptors with a dissociation
constant (Kd) of 1.02 lM. Experimental data (Table
1) evidently show high affinities of the compounds
9 for aIIbb3.
possible to note negative influence of a nitro group
on inhibition of FITC-Fg binding to aIIbb3 and anti-
aggregative activity. RGDF mimetics 9c and 9d have
demonstrated maximum affinity for aIIbb3 receptors
on the surface of human washed platelets.
Experimental data obtained on antiaggregative activity
and inhibition of FITC-Fg binding to fibrinogen recep-
tor allow to consider the novel RGDF mimetics based
on
3-[(1,2,3,4-tetrahydroisoquinoline-7-yl-amino)car-
bonyl]benzoic acid and b-substituted b-alanines as po-
tent platelet aggregation inhibitors and aIIbb3 receptor
antagonists.
References and notes
Earlier, it was demonstrated by us that incorporation
of phenyl in the b-position of b-alanine residue in the
compound 3a brought a 3-fold increase in antiaggre-
gative activity for the compound 3b and a 2-fold
increase in its affinity.9 For the derivatives of 4-
(1,2,3,4-tetrahydroisoquinoline-7-yl-amino)-4-oxobutyr-
ic acid, this structure modification, practically,
produced no effect on the affinity of mimetic 4b for
aIIbb3, while its antiaggregative activity had enhanced
almost twice corresponding to the compound 4a.10
Similar tendency could be traced also for the peers
mimetics 9a and 9b, 9e and 9f. In general, biological
activity of the compounds containing fragment of
isophthalic acid (mimetics 9a and 9b) was lower than
that of their analogs 4a and 4b. The presence of meth-
oxy substituents in para position of the phenyl groups
situated in b-alanine moieties of RGDF mimetics 9c
and 9g afforded a minor enhancement of indexes for
inhibition of FITC-Fg binding to aIIbb3 and antiag-
gregative activity of these compounds relative to their
analogs 9b and 9f, respectively. Introduction of second
methoxy group in the meta position of benzene ring
also insignificantly improved values of IC50 both for
binding to aIIbb3 and for platelet aggregation inhibi-
tion in in vitro assays for the compounds 9d and
9h, compared to their analogs 9c and 9g. Comparison
of biological properties of the mimetics 9a–9d without
nitro group in isophthalic acid fragment with those of
their analogs 9e–9h containing nitro groups makes it
1. Coller, B. S. Circulation 1995, 92, 2373.
2. Zablocki, J. A.; Rao, S. N.; Baron, D. A.; Flynn, D. L.;
Nicholson, N. S.; Feigen, L. P. Curr. Pharm. Des. 1995, 1,
533.
3. Scarborough, R. M.; Gretler, D. D. J. Med. Chem. 2000,
43, 3454.
4. Andronati, S. A.; Karaseva, T. L.; Krysko, A. A. Curr.
Med. Chem. 2004, 11, 1183.
ˇ
ˇ
ˇ
5. Anderluh, M.; Cesar, J.; Stefanic, P.; Kikelj, D.; Janes, D.;
Murn, J.; Nadrah, K.; Tominc, M.; Addicks, E.; Giannis,
A.; Stegnar, M.; Dolenc, M. S. Eur. J. Med. Chem. 2005,
40, 25.
ˇ
6. Anderluh, P. S.; Anderluh, M.; Ila, J.; Mravljak, J.;
Dolenc, M. S.; Stegnar, M.; Kikelj, D. J. Med. Chem.
2005, 48, 3110.
7. Alig, L.; Edenhofer, A.; Hadvary, P.; Hurzeler, M.;
Knopp, D.; Muller, M.; Steiner, B.; Trzeciak, A.; Weller,
T. J. Med. Chem. 1992, 35, 4393.
8. Zablocki, J. A.; Rico, J. G.; Garland, R. B.; Rogers, T. E.;
Williams, K.; Schretzman, L. A.; Rao, S. A.; Bovy, P. R.;
Tjoeng, F. S.; Lindmark, R. J.; Toth, M. V.; Zupec, M. E.;
McMackins, D. E.; Adams, S. P.; Miyano, M.; Markos,
C. S.; Milton, M. N.; Paulson, S.; Herin, M.; Jacqmin, P.;
Nicholson, N. S.; Panzerknodle, S. G.; Haas, N. F.; Page,
J. D.; Szalony, J. A.; Taite, B. B.; Salyers, A. K.; King, L.
W.; Campion, J. G.; Feigen, L. P. J. Med. Chem. 1995, 38,
2378.
9. Krysko, A. A.; Chugunov, B. M.; Malovichko, O. L.;
Andronati, S. A.; Kabanova, T. A.; Karaseva, T. L.;
Kiriyak, A. V. Bioorg. Med. Chem. Lett. 2004, 14,
5533.