Peculiarities of b-Pinene Autoxidation
Acknowledgements
Financial support of the ETH Zurich is kindly acknowledged. E.M.
is grateful for the Schweizerische Gesellschaft der Verfahrens- und
ChemieingenieurInnen Thesis Award 2011.
[37] Experimental values for similar substrates range from 4 to 6 kcalmolꢀ1
,
[38] The subsequent destructive cage reaction (peracid+allyl radical, giving
acyloxyl radical and alcohol) faces an activation energy of 9.9 kcalmolꢀ1
.
Keywords: autoxidation
renewable resources · singlet oxygen
·
kinetics
·
radical reactions
·
In comparison with the unactivated cage reaction in cyclohexane au-
toxidation (CyOOH+alkyl radical, giving alkoxyl radical and alcohol), for
which the barrier is 6.8 kcalmolꢀ1 and the cage efficiency is 5%,[16] one
can exclude the contribution of such a cage reaction in the present
case.
[1] M. Gscheidmeier, H. Fleig, Turpentines, in Ullmann’s Encyclopedia of In-
dustrial Chemistry, Wiley-VCH, Weinheim, 2005.
[2] Pulp and Paper Capacities, Food and Agriculture Organisation of the
United Nations, Rome, 2008.
[41] J. Thiebaud, C. Fittschen, Appl. Phys. B 2006, 85, 383.
[3] R. Rinaldi, F. Schꢂth, ChemSusChem 2009, 2, 1096.
[4] K. G. Fahlbusch, F. J. Hammerschmitdt, J. Panten, W. Pickenhaben, D.
Schatkowski, Flavors and Fragrances, in Ullmann’s Encyclopedia of Indus-
trial Chemistry, Wiley-VCH, Weinheim, 2005.
[5] J. P. Vitꢃ, W. Francke, Chem. Unserer Zeit 1985, 19, 11.
[6] K. Bauer, D. Garbe, H. Surburg, Common Fragrance and Flavour Materi-
als, Wiley-VCH, Weinheim, 1997.
[46] T. Saito, S. Nishihara, S. Yamanaka, Y. Kitagawa, T. Kawakami, S. Yamada,
H. Isobe, M. Okumura, K. Yamaguchi, Theor. Chem. Acc. 2011. DOI:
10.1007/s00214-011-0914-z.
[12] M. J. da Silva, P. Robles-Dutenhefner, L. Menini, E. V. Gusevskaya, J. Mol.
[15] P. A. Robles-Dutenhefner, M. J. da Silva, L. S. Sales, E. M. B. Sousa, E. V.
[48] The energy barrier was obtained from quantum chemical calculation,
based on UB3LYP/6–311+ +G(df,pd)//UB3LYP/6–31G(d,p) density func-
tional theory, including a ZPE correction.
[49] N. Turrꢆ, U. Neuenschwander, A. Baiker, J. Peeters, I. Hermans, Chem.
Eur. J. 2010, 16, 13226.
[50] D. Grosjean, E. L. Williams, Atmos. Environ. Part A 1992, 26, 1395.
[51] The literature values from reference [21] for abstraction and addition of
HOO to propene (i.e., 0.18 and 2.8mꢀ1 sꢀ1, respectively) were corrected
C
by DFT-based energy increments of 2.7 and 1.3 kcalmolꢀ1, respectively,
yielding values of 7.6 and 17mꢀ1 ꢀ1, respectively, at 363 K.
s
[19] Q. Wang, S. Y. Fan, H. N. C. Wang, Z. Li, B. M. Fung, R. J. Twieg, H. T.
[52] R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G.
[53] This expression stems from the differential d[ln(r)]/d(1/T), applied to the
[20] Although the ol-epoxide by-products could, in principle, also be
formed through a unimolecular rearrangement of the peroxyl radicals;
this would imply that the compounds would be primary in origin (see
the Supporting Information).
[21] The resulting radical is tertiary and benefits from hyperconjugation of
the cyclobutyl group. For unactivated olefins, such as propene, oppo-
site selectivities have been computationally postulated: C. C. Chen, J. W.
to verify experimentally that claim, since the formed intermediate
quickly rearranges into epoxide.
C
rate equation r(T)=kprop(T) [ROO ]QSS(T) [RH], neglecting the temperature
dependency of the biradical cross-reactions.
[54] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone,
B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsu-
ji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Na-
kajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Och-
terski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui,
A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford
CT, 2009.
[27] D. J. Bogan, J. J. Havel, R. A. Coveleskie, F. Celii, B. J. Stammerjohn, W. A.
[28] T. L. Nguyen, L. Vereecken, J. Peeters, Z. Phys. Chem. 2010, 224, 1081.
[30] A. S. Hasson, K. T. Kuwata, M. C. Arroyo, E. B. Petersen, J. Photochem.
[32] C. A. Tolman, J. D. Druliner, M. J. Nappa, N. Herron in Activation and
Functionalization of Alkanes, (Ed.: C. L. Hill), Wiley-VCH, Weinheim, 1989.
[33] P. D. Lightfoot, R. A. Cox, J. N. Crowley, M. Destriau, G. D. Hayman, M. E.
Jenkin, G. K. Moortgat, F. Zabel, Atmos. Environ. 1992, 27A, 1805.
Received: May 25, 2011
Published online on September 7, 2011
ChemSusChem 2011, 4, 1613 – 1621
ꢁ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1621