ORGANIC
LETTERS
2006
Vol. 8, No. 20
4465-4468
Efficient Microwave-Assisted Tandem
N- to S-Acyl Transfer and Thioester
Exchange for the Preparation of a
Glycosylated Peptide Thioester
Fumihiro Nagaike, Yuko Onuma, Chie Kanazawa, Hironobu Hojo,* Akiharu Ueki,
Yuko Nakahara, and Yoshiaki Nakahara*
Department of Applied Biochemistry, Institute of Glycotechnology, Tokai UniVersity,
Hiratsuka, Kanagawa, 259-1292, Japan
Received June 29, 2006
ABSTRACT
A peptide carrying a mercaptomethylated proline derivative at the C-terminus was prepared by solid-phase peptide synthesis (SPPS) and
converted to the thioester of 3-mercaptopropionic acid (MPA) by aqueous MPA under microwave irradiation conditions. This post-SPPS
thioesterification reaction was successfully applied to the synthesis of a glycopeptide thioester composed of 25 amino acid (AA) residues,
which was then used for the preparation of a 61-AA glycopeptide by the thioester condensation method.
Segment condensation methods, such as the thioester method,1,2
and native chemical ligation3,4 have been highly optimized
for the chemical synthesis of proteins. The key intermediates
for these strategies are the peptide thioesters, which have
been mainly prepared by the tert-butoxycarbonyl (Boc) mode
solid-phase method. Because of the increasing interest in the
posttranslational modifications of protein, such as glycosy-
lation, the preparation of a peptide thioester by the 9-fluo-
renylmethoxycarbonyl (Fmoc) strategy, which does not use
harsh acidic conditions, has been reported.5-20 These methods
include the use of thioester-compatible Fmoc cleavage
cocktails with a preassembled thioester linkage on resin,6,10
post solid-phase peptide synthesis (post-SPPS) thioesterifi-
cation using sulfonamide linkers,7,9 aryl hydrazine support,15
protected peptide segments,5,8,11-13 and post-SPPS thioes-
terification by an O- to S- or N- to S-acyl transfer reaction.16-20
Some of these methods were actually applied to the prepara-
tion of glycosylated peptide thioesters, which led to the
successful synthesis of glycoproteins.7,16,21-27 However, the
(10) Clippingdale, A. B.; Barrow, C. J.; Wade, J. D. J. Pept. Sci. 2000,
6, 225-234.
(11) Swinnen, D.; Hilvert, D. Org. Lett. 2000, 2, 2439-2442.
(12) Mezo, A. R.; Cheng, R. P.; Imperiali, B. J. Am. Chem. Soc. 2001,
123, 3885-3891.
(1) Hojo, H.; Aimoto, S. Bull. Chem. Soc. Jpn. 1991, 64, 111-117.
(2) Aimoto, S. Biopolymer (Pept. Sci.) 1999, 51, 247-265.
(3) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science
1994, 266, 776-779.
(4) Dawson, P. E.; Kent, S. B. H. Annu. ReV. Biochem. 2000, 69, 923-
960.
(13) Flavell, R. R.; Huse, M.; Goger, M.; Trester-Zedlitz, M.; Kuriyan,
J.; Muir, T. W. Org. Lett. 2002, 4, 165-168.
(14) Brask, J.; Albericio, F.; Jensen, K. Org. Lett. 2003, 5, 2951-2953.
(15) Camarero, J. A.; Hackel, B. J.; de Yoreo, J. J.; Mitchell, A. R. J.
Org. Chem. 2004, 69, 4145-4151.
(5) Futaki, S.; Sogawa, K.; Maruyama, J.; Asahara, T.; Niwa, M.; Hojo,
H. Tetrahedron Lett. 1997, 38, 6237-6240.
(16) Warren, J. D.; Miller, J. S.; Keding, S. J.; Danishefsky, S. J. J. Am.
Chem. Soc. 2004, 126, 6576-6578.
(6) Li, X.; Kawakami, T.; Aimoto, S. Tetrahedron Lett. 1998, 39, 8669-
(17) Botti, P.; Villain, M.; Manganiello, S.; Gaertner, H. Org. Lett. 2004,
6, 4861-4864.
8672.
(7) Shin, Y.; Winans, K. A.; Backes, B. J.; Kent, S. B. H.; Ellman, J.
A.; Bertozzi, C. R. J. Am. Chem. Soc. 1999, 121, 11684-11689.
(8) Alsina, J.; Yokumu, T. S.; Albericio, F.; Barany, G. J. Org. Chem.
1999, 64, 8761-8769.
(9) Ingenito, R.; Bianchi, E.; Fattori, D.; Pessi, A. J. Am. Chem. Soc.
1999, 121, 11369-11374.
(18) Kawakami, T.; Sumida, M.; Nakamura, K.; Vorherr, T.; Aimoto,
S. Tetrahedron Lett. 2005, 46, 8805-8807.
(19) Ollivier, N.; Behr, J.-B.; El-Mahdi, O.; Blanpain, A.; Melnyk, O.
Org. Lett. 2005, 7, 2647-2650.
(20) Ohta, Y.; Itoh, S.; Shigenaga, A.; Shintaku, S.; Fujii, N.; Otaka, A.
Org. Lett. 2006, 8, 467-470.
10.1021/ol0616034 CCC: $33.50
© 2006 American Chemical Society
Published on Web 09/07/2006