performance, it has some disadvantages, one of which is the
formation of an unstable interface between the ITO and
PEDOT-PSS.4 Moreover, the high conductivity of the
PEDOT-PSS is undesirable, when used in pixilated displays.5
Recently, new hole transporting materials (HTM) for replac-
ing the PEDOT-PSS have been reported, because the long-
term stability of such devices remain an issue for commercial-
ization.5-7
In this paper, we report on the preparation of a new curable
HTM-containing PFCB. When heated, this monomer under-
goes cyclopolymerization, producing PFCB polymers. The
optical, electrochemical, and surface properties of this PFCB-
based HTM were investigated.
The synthetic scheme for the preparation of the TFVE-
type monomer for a new HTM is shown in Scheme 1.
Compound 1 was prepared as described previously8b,9a and
is commercially available from Oak-wood Chemicals, Inc.
Compound 2 was synthesized from 1 as follows. tert-
Butyllithium was added dropwise to a solution of 1 in diethyl
ether at -78 °C. The reaction mixture was stirred at -78
°C for 1 h, and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-
dioxaborolane was then added. Compound 2 was obtained
as a colorless liquid in 55% yield. Compound 3 was prepared
according to the published procedure.11 TPA-TFVE was
synthesized from 2 and 3 using the palladium-catalyzed
Suzuki coupling method.12 TPA-TFVE was obtained as a
white powder in 35% yield. The TPA-TFVE was soluble
in common organic solvents such as chlorobenzene, THF,
and toluene. Due to the trifunctional TFVE of TPA-TFVE,
it can be thermally cured.8b
Scheme 1
Thermal properties were investigated by means of TGA
and DSC. As shown in Figure 1, the endothermic peak of
TPA-TFVE corresponds to its melting point. The broad
exothermic peak in the DSC curve corresponds to its thermal
polymerization.8b Exothermic peaks were found at about Tonset
) 160 °C and Tmax ) 230 °C. The decomposition temper-
ature (Td) of the TPA-PFCB polymer was found to be 487
°C. Thus, the PFCB polymer has good thermal stability. After
curing, a glass transition temperature was not detected before
Td, implying the existence of a high degree of cross-linking
between the TFVE groups.
An organic solvent resistant cross-linkable hole transport-
ing layer (HTL) would be an alternative to water soluble
PEDOT-PSS.6 Especially, perfluorocyclobutane (PFCB)
based hole transporting polymers have many advantages and
the properties of these polymers are suitable for applications
to PLEDs.5,7 PFCB polymers are synthesized by the radical
mediated thermal cyclopolymerization of trifluorovinyl ethers
(TFVE). These polymers are known to lead to increased
processability, durability, chemical resistance, thermal stabil-
ity, and optical properties.8 Thus, PFCB polymers would be
suitable for use in various applications such as polymer
photonic devices,9 low dielectric coatings,10 and light-
emitting diodes.5,7
The TPA-TFVE was spin-coated onto a ITO substrate
and then cured at 230 °C for 2 h under nitrogen. The resulting
polymer showed high durability in common organic solvents
such as chlorobenzene and toluene. We investigated the
(8) (a) Kennedy, A. P.; Babb, D. A.; Bremmer, J. N.; Pasztor, A. J., Jr.
J. Polym. Sci., Part A: Polym. Chem. 1995, 33, 1859. (b) Smith, D. W.,
Jr.; Babb, D. A. Macromolecules 1996, 29, 852. (c) Smith, D. W., Jr.; Babb,
D. A.; Shah, H. V.; Hoeglund, A.; Traiphol, R.; Perahia, D.; Boone, H.
W.; Langhoff, C.; Radler, M. J. Fluorine Chem. 2000, 104, 109. (d)
Traiphol, R.; Shah, H.; Smith, D. W., Jr.; Perahia, D. Macromolecules 2001,
34, 3954. (e) Smith, D. W., Jr.; Chen, S.; Kumar, S. M.; Ballato, J.; Topping,
C.; Shah, H. V.; Foulger, S. H. AdV. Mater. 2002, 14, 1585. (f) Chun, C.;
Ghim, J.; Kim, M.-J.; Kim, D.-Y. J. Polym. Sci., Part A: Polym. Chem.
2005, 43, 3525. (g) Spraul, B. K.; Suresh, S.; Jin, J.; Smith, D. W., Jr. J.
Am. Chem. Soc. 2006, 128, 7055. (h) Kumar, G. A.; Riman, R. E.; Banerjee,
S.; Kornienko, A.; Brennan, J. G.; Chen, S.; Smith, D. W., Jr.; Ballato, J.
Appl. Phys. Lett. 2006, 88, 091902.
(9) (a) Ghim, J.; Lee, D.-S.; Shin, B. G.; Vak, D.; Yi, D. K.; Kim, M.-
J.; Shim, H.-S.; Kim, J.-J.; Kim, D.-Y. Macromolecules 2004, 37, 5724.
(b) Ghim, J.; Shim, H.-S.; Shin, B. G.; Park, J.-H.; Hwang, J.-T.; Chun,
C.; Oh, S.-H.; Kim, J.-J.; Kim, D.-Y. Macromolecules 2005, 38, 8278. (c)
Wong, S.; Ma, H.; Barto, R.; Frank, C. W.; Jen, A. K.-Y. Marcromolecules
2004, 37, 5578. (d) Oh, M.-C.; Lee, M.-H.; Ahn, J.-H.; Lee, H.-J.; Han, S.
G. Appl. Phys. Lett. 1998, 72, 1559. (e) Spraul, B. K.; Suresh, S.; Glaser,
S.; Perahia, D.; Ballato, J.; Smith, D. W., Jr. J. Am. Chem. Soc. 2004, 126,
12772.
(4) (a) de Jong, M. P.; Van IJzendoorn, L. J.; de Voigt, M. J. A. Appl.
Phys. Lett. 2000, 77, 2255. (b) Wong, K. W.; Yip, H. L.; Luo, Y.; Wong,
K. Y.; Low, K. H.; Chow, H. F.; Gao, Z. Q.; Yeung, W. L.; Chang, C. C.;
Lau, W. M. Appl. Phys. Lett. 2002, 80, 2788.
(5) Gong, X.; Moses, D.; Heeger, A. J.; Liu, S.; Jen, A. K.-Y. Appl.
Phys. Lett. 2003, 83, 183.
(6) (a) Yan, H.; Huang, Q.; Scott, B. J.; Marks, T. J. Appl. Phys. Lett.
2004, 84, 3873. (b) Yan, H.; Lee, P.; Armstrong, N. R.; Graham, A.;
Evmenenko, G. A.; Dutta, P.; Marks, T. J. J. Am. Chem. Soc. 2005, 127,
3172. (c) Bacher, A.; Erdelen, C. H.; Paulus, W.; Ringsdorf, H.; Schmidt,
H.-W.; Schuhmacher, P. Macromolecules 1999, 32, 4551. (d) Braig, T.;
Muˆller, D. C.; Groâ, M.; Meerholz, K.; Nuyken, O. Macromol. Rapid
Commun. 2000, 21, 583. (e) Bacher, E.; Jungermann, S.; Rojahn, M.;
Wiederhirn, V.; Nuyken, O. Macromol. Rapid Commun. 2004, 25, 1191.
(f) Zhang, Y.-D.; Hreha, R. D.; Jabbour, G. E.; Kippelen, B.; Peyghambarian
N.; Marder, S. R. J. Mater. Chem. 2002, 12, 1703. (g) Domercq, B.; Hreha,
R. D.; Zhang, Y.-D.; Larribeau, N.; Haddock, J. N.; Schultz, C.; Marder,
S. R.; Kippelen, B. Chem. Mater. 2003, 15, 1491. (h) Chen, J. P.; Klaerner,
G.; Lee, J.-I.; Markiewicz, D.; Lee, V. Y.; Miller, R. D.; Scott, J. C. Synth.
Met. 1999, 107, 129.
(7) (a) Liu, S.; Jiang, X.; Ma, H.; Liu, M. S.; Jen, A. K.-Y. Macromol-
ecules 2000, 33, 3514. (b) Jiang, X.; Liu, S.; Liu, M. S.; Ma, H.; Jen, A.
K.-Y. Appl. Phys. Lett. 2000, 76, 2985. (c) Jiang, X.; Liu, S.; Liu, M. S.;
Herguth, P.; Jen, A. K.-Y.; Fong, H.; Sarikaya, M. AdV. Funct. Mater. 2002,
12. 745 (d) Niu, Y.-H.; Tung, Y.-L.; Chi, Y.; Shu, C.-F.; Kim, J. H.; Chen,
B.; Luo, J.; Carty, A. J.; Jen, A. K.-Y. Chem. Mater. 2005, 17, 3532. (e)
Casasanta, V.; Londergan, T.; Dinu, R. SPIE 2004, 5351, 217.
(10) (a) Babb, D. A.; Ezzell, B. R.; Clement, K. S.; Richey, W. F.;
Kennedy, A. P. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 3465. (b)
Schwo¨diauer, R.; Neugschwandtner, G. S.; Bauer-Gogonea, S.; Bauer, S.
Appl. Phys. Lett. 1999, 75, 3998.
(11) Chou, M.-Y.; Leung, M.-K.; Su, Y. O.; Chiang, C. L.; Lin, C.-C.;
Liu, J.-H.; Kuo, C.-K.; Mou, C.-Y. Chem. Mater. 2004, 16, 654.
(12) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457.
4704
Org. Lett., Vol. 8, No. 21, 2006