100
A. Sinhamahapatra et al. / Applied Catalysis A: General 394 (2011) 93–100
Table 3
free synthesis was found to be better than that of both polar and non
polar solvent. Among the substituted phenols, m-amino phenol was
found to be more reactive than other phenols. 100% conversion of m-
amino phenol with 100% selectivity of 7-amino 4-methyl coumarin
was obtained at 110 ◦C in 30 min by conventional heating method.
The catalyst m-ZrP was also active for phenol with 57% yield in 4 h
at 160 ◦C using conventional heating. Microwave assisted synthe-
sis method was found to be the most appropriate for the synthesis
of coumarin derivatives with improved yield as compared to con-
ventional heating method. The m-ZrP is easily recoverable from
reaction system and can be reused without reasonable change in
catalytic activity.
Pechmann condensation of different phenols under microwave irradiation over m-
ZrP.
Entry
Substrate
Yield (%)
1
2
3
4
5
6
7
Resorcinol
97
3-Amino phenola
2-Methyl resorcinol
Pohloroglucinol
Pyrogallol
∼100
92
97
94
91
67
o-Hydroxy acetophenone
Phenol
Reaction condition: phenols 5 mmol, EAA 10 mmol; temperature: 160 ◦C; time
15 min; power 600 W; catalyst 15 wt%.
a
In case of 3-amino phenol; temperature: 110 ◦C; time 10 min; power 400 W.
Acknowledgements
The authors are thankful to DST, India (SR/S1/IC-11/2008) and
CSIR (India), Network project (NWP010) for funding.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] O. Kennedy, R. Zhorenes, Coumarins: Biology, Applications and Mode of Action,
John Wiley and Sons, Chichester, 1997.
[2] A. Takadate, T. Tahara, H. Fujino, S. Goya, Chem. Pharm. Bull. 30 (1982)
4120–4125.
[3] M. Jimeˇınez, J.J. Mateo, R.J. Mateo, Chromatogr. A 870 (2000) 473–481.
[4] G. Cravotto, G.M. Nano, G. Palmisano, S. Tagliapietra, Tetrahedron: Asymmetry
12 (2001) 707–709.
[5] G.J. Fan, W. Mar, M.K. Park, E. Wook Choi, K. Kim, S. Kim, Bio-org. Med. Chem.
Lett. 11 (2001) 2361–2363.
Fig. 8. Re-use of catalyst m-ZrP for the synthesis of 7-hydroxy 4-methyl coumarin
(reaction condition: resorcinol/EAA, 1:2; amount of catalyst, 15 wt%; temperature,
160 ◦C; reaction time, 4 h).
[6] C.J. Wang, Y.J. Hsieh, C.Y. Chu, Y.L. Lin, T.H. Tseng, Cancer Lett. 183 (2002)
163–168.
[7] A. Russell, J.R. Frye, Org. Synth. 21 (1941) 22–27.
[8] I. Yavari, R. Hekmat-shoar, A. Zonuzi, Tetrahedron Lett. 39 (1998) 2391–2392.
[9] F. Bigi, L. Chesini, R. Maggi, G. Sartori, J. Org. Chem. 64 (1999) 1033–1035.
[10] N. Cairns, L.M. Harwood, D.P. Astles, J. Chem. Soc. Perkin Trans. 1 (1994)
3101–3107.
[11] F.W. Canter, F.H. Curd, A. Robertson, J. Chem. Soc. (1931) 1255–1265.
[12] L.L. Woods, J. Sapp, J. Org. Chem. 27 (1962) 3703–3705.
[13] H. Valizadeha, A. Shockravi, Tetrahedron Lett. 46 (2005) 3501–3503.
[14] P. Sun, Z. Hu, Synth. Commun. 35 (2005) 1875–1880.
[15] T. Sugino, K. Tanaka, Chem. Lett. (2000) 110–111.
[16] E.A. Gunnewegh, A.J. Hoefnagel, H. van Bekkum, J. Mol. Catal. A: Chem. 100
(1995) 87–92.
[17] D.D. Chaudhari, Chem. Ind. (1983) 568–569.
[18] R. Sabou, W.F. Hoelderich, D. Ramprasad, R. Weinand, J. Catal. 232 (2005) 34–37.
[19] T.S. Li, Z.H. Zhang, F. Yang, C.G. Fu, J. Chem. Res. (S) (1998) 38–39.
[20] S. Palaniappan, A. John, J. Mol. Catal. A: Chem. 233 (2005) 9–15.
[21] G.P. Romanelli, D. Bennardi, D.M. Ruiz, G. Baronetti, H.J. Thomasb, J.C. Autino,
Tetrahedron Lett. 45 (2004) 8935–8939.
[22] S. Sudha, K. Venkatachalam, S. Vishnu Priya, J. Herbert Mabel, M. Palanichamy,
V. Murugesan, J. Mol. Catal. A: Chem. 291 (2008) 22–29.
[23] S. Selvakumar, M. Chidambaram, A.P. Singh, Catal. Commun. 8 (2007) 777–783.
[24] B. Tyagi, M.K. Mishra, R.V. Jasra, J. Mol. Catal. A: Chem. 276 (2007) 47–56.
[25] B.M. Reddy, P.M. Sreekanth, P. Lakshmanan, J. Mol. Catal. A: Chem. 237 (2005)
93–100.
Fig. 9. FT-IR spectra of m-ZrP catalyst (a), used m-ZrP catalyst after acetone wash
(b) and regenerated catalyst after H2O2 treatment (c) for the synthesis of 7-hydroxy
4-methyl coumarin.
[26] M. Maheswara, V. Siddaiah, G. Lakishmi, V. Damu, Y.K. Rao, C.V. Rao, J. Mol.
Catal. A: Chem. 255 (2006) 49–52.
[27] Y. Kamiya, S. Sakata, Y. Yashinaga, R. Ohnishi, T. Okuhara, Catal. Lett. 94 (2004)
45–47.
alyst. The IR of the acetone washed used catalyst gave additional
peaks along with the peaks due to pristine m-ZrP catalyst, indicated
the presence of organic substance in the acetone washed catalyst.
However, IR of H2O2 treated regenerated m-ZrP catalyst is identical
to that of pristine m-ZrP.
[28] S.X. Song, R.A. Kydd, J. Chem. Soc. Faraday Trans. 94 (1998) 1333–1338.
[29] S. Palaniappan, R.C. Shekhar, J. Mol. Catal. A: Chem. 209 (2004) 117–124.
[30] K. Segawa, Y. Kurusu, Y. Nakaiima, M. Kinoshita, J. Catal. 94 (1985) 491–500.
[31] A. Clearfield, D.S. Thakur, Appl. Catal. 26 (1986) 1–26.
[32] T. Hattori, H. Hanai, Y. Murakami, J. Catal. 56 (1979) 294–295.
[33] G. Alberti, M. Casciola, F. Marmottni, R. Vivani, J. Porous Mater. 6 (1999)
299–305.
[34] K. Segawa, S. Nakata, S. Asaoka, Mater. Chem. Phys. 17 (1987) 181–200.
[35] R. Joshi, U. Chudasama, J. Sci. Ind. Res. 67 (2008) 1092–1097.
[36] A. Sinhamahapatra, N. Sutradhar, B. Roy, A. Tarafdar, H.C. Bajaj, A.B. Panda, Appl.
Catal. A: Gen. 385 (2010) 22–30.
4. Conclusion
Mesoporous zirconium phosphate with high surface area and
narrow pore size distribution showed excellent catalytic activity for
the synthesis of substituted coumarins through Pechmann conden-
sation even in very low catalyst to substrate ratio (15 wt%). Solvent
[37] A. de la Hoz, A. Moreno, E. Vazquez, Synlett (1999) 608–610.
[38] B. Tyagi, M.K. Mishra, R.V. Jasra, J. Mol. Catal. A: Chem. 286 (2008) 41–46.
[39] L. Wang, J. Xia, H. Tian, C. Qian, Y. Ma, Int. J. Chem. 42B (2003) 2097–2099.