polymer-based devices and light-emitting diodes. We report here
the successful fabrication of such a multilayer structure, employing
organic semiconducting materials with different ionisation poten-
tials to achieve an energetic redox cascade at a dye-sensitised
nanostructured interface. The application of this strategy to the
optimisation of solid-state dye-sensitised solar cells is currently
ongoing.
We acknowledge the Commission of the European Community
(Project MOLYCELL Contract No. 502783) and the EPSRC for
their financial assistance and provision of the Swansea National
Mass Spectrometry service. We thank Johnson Matthey Ltd. for
the award of a studentship (TP) and we thank ARC, CSIRO
and VESKI for financial support. We are very grateful to
Ms. Samantha Handa for performing the cyclic voltammetry
measurements.
Fig. 5 Recombination halftimes determined from transient absorption
data such as that shown in Fig. 4 as a function of polymer ionisation
potential. Data shown with the inclusion ($) and omission (#) of lithium
triflamide from the polymer dipping solution.
Notes and references
as illustrated in Fig. 1, increasing hole transfer from the polymer to
the spiro-OMeTAD. This would increase the spatial separation of
photogenerated holes from the TiO2 surface and consequently
result in slower charge recombination dynamics, as observed
experimentally.
1 U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck,
H. Spreitzer and M. Gra¨tzel, Nature, 1998, 395, 583.
2 S. Coe, W. K. Woo, M. Bawendi and V. Bulovic, Nature, 2002, 420,
800.
3 W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Science, 2002, 295,
2425.
We note that the retardation of recombination dynamics
observed due to the insertion of the polymer layer is dependent
upon the inclusion of lithium triflamide in the polymer deposition
solution. A retardation of recombination dynamics with increasing
polymer ionisation potential is also observed in the absence of the
salt (Fig. 5, open symbols) but the effect is small compared to that
observed in the presence of the salts. This observation is consistent
with our conclusion (see above) that the formation of an energetic
redox cascade will be dependent not only upon the relative
ionisation potentials of the materials employed but also upon the
interfacial dipoles and coulombic attractions between the photo-
generated charges. In the absence of ionic screening, these
electrostatic interactions can be expected to dominate the
interfacial energetics, and therefore prevent significant formation
of an energetic redox cascade. However, the presence of the co-
deposited lithium triflamide can be expected to screen these
electrostatic interactions, allowing the formation of an energetic
redox cascade based upon the differing ionisation potentials of the
polymer and spiro-OMeTAD layers, consistent with our experi-
mental observations.
4 A. Hagfeldt and M. Gra¨tzel, Acc. Chem. Res., 2000, 33, 269.
5 N. Kopidakis, K. D. Benkstein, J. van de Lagemaat and A. J. Frank,
J. Phys. Chem. B, 2003, 107, 11307.
6 E. Galoppini, W. Z. Guo, P. Qu and G. J. Meyer, J. Am. Chem. Soc.,
2001, 123, 4342.
7 A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker and K. G.
U. Wijayantha, J. Phys. Chem. B, 2000, 104, 949.
8 T. A. Heimer, E. J. Heilweil, C. A. Bignozzi and G. J. Meyer, J. Phys.
Chem. A, 2000, 104, 4256.
9 J. Kru¨ger, R. Plass, L. Cevey, M. Piccirelli, M. Gra¨tzel and U. Bach,
Appl. Phys. Lett., 2001, 79, 2085.
10 J. Kru¨ger, R. Plass, M. Gra¨tzel, P. J. Cameron and L. M. Peter, J. Phys.
Chem. B, 2003, 107, 7536.
11 U. Bach, Y. Tachibana, J. E. Moser, S. A. Haque, J. R. Durrant,
M. Gra¨tzel and D. R. Klug, J. Am. Chem. Soc., 1999, 121, 7445.
12 S. A. Haque, T. Park, C. Xu, S. Koops, N. Schulte, R. J. Potter,
A. B. Holmes and J. R. Durrant, Adv. Funct. Mater., 2004, 14, 435.
13 L. Schmidt-Mende, S. M. Zakeeruddin and M. Gra¨tzel, Appl. Phys.
Lett., 2005, 86, 013504.
14 J. N. Clifford, E. Palomares, M. K. Nazeeruddin, M. Gra¨tzel, J. Nelson,
X. Li, N. J. Long and J. R. Durrant, J. Am. Chem. Soc., 2004, 126,
5225.
15 J. Nelson, S. A. Haque, D. R. Klug and J. R. Durrant, Phys. Rev. B,
2001, 6320, 205321.
16 S. Pelet, J. E. Moser and M. Gra¨tzel, J. Phys. Chem. B, 2000, 104, 1791.
17 A. Zaban, A. Meier and B. A. Gregg, J. Phys. Chem. B, 1997, 101, 7985.
18 T. Park, S. A. Haque, R. J. Potter, A. B. Holmes and J. R. Durrant,
Chem. Commun., 2003, 2878.
The solution processing of organic multilayer nanostructures is
a key challenge for a range of organic electronic and optoelectronic
devices, including not only dye-sensitised solar cells, but also
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 535–537 | 537