Esch, B. L. Feringa and B. J. van Wees, Phys. Rev. Lett., 2003, 91,
207402.
glass after the four cycles with TBA(CF3SO3) as electrolyte showed
only a modest change from 80u to 70u. In addition, the use of
TBA(CF3SO3) allows for oxidative ring opening of 1c-ITO by
cycling at scan rates , 1 V s21, between 0 and 0.5 V vs. SCE{
without loss in surface coverage.
3 S. Kawata and Y. Kawata, Chem. Rev., 2000, 100, 1777; Molecular
Electronics: Science and Technology, ed. A. Aviram and M. A. Ratner,
New York Academy of Sciences, New York, 1998; An Introduction to
Molecular Electronics, ed. M. C. Petty, M. R. Bryce and D. Bloor,
Arnold, London, 1995; I. Willner and B. Willner, Pure Appl. Chem.,
2001, 73, 535; A. N. Shipway and I. Willner, Acc. Chem. Res., 2001, 34,
421.
4 R. Baron, A. Onopriyenko, E. Katz, O. Lioubashevski, I. Willner,
S. Wang and H. Tian, Chem. Commun., 2006, 2147; I. Willner and
E. Katz, Angew. Chem., Int. Ed., 2000, 39, 1180; A. Doron, E. Katz,
G. Tao and I. Willner, Langmuir, 1997, 13, 1783.
5 G. Berkovic, V. Krongauz and V. Weis, Chem. Rev., 2000, 100, 1741;
S. Giordani, M. A. Cejas and F. M. Raymo, Tetrahedron, 2004, 60,
10973; M.-H. Yang and M. C. Biewer, Tetrahedron Lett., 2005, 46, 349.
6 Z. F. Liu, K. Hashimoto and A. Fujishima, Nature, 1990, 347, 658;
N. Tamaoki, S. Yoshimura and T. Yamaoka, Thin Solid Films, 1992,
221, 132; A. Archut, F. Vogtle, L. De Cola, G. C. Azzellini, V. Balzani,
P. S. Ramanujam and R. H. Berg, Chem.–Eur. J., 1998, 4, 699.
7 J. M. Galvin and G. B. Schuster, Supramol. Sci., 1998, 5, 89.
8 M. Irie, Chem. Rev., 2000, 100, 1685; H. Tian and S. Yang, Chem. Soc.
Rev., 2004, 33, 85; N. Katsonis, T. Kudernac, M. Walko, S. J. van der
Molen, B. J. van Wees and B. L. Feringa, Adv. Mater., 2006, 18, 1397.
9 T. Koshido, T. Kawai and K. Yoshino, J. Phys. Chem., 1995, 99, 6110;
S. Fraysse, C. Coudret and J.-P. Launey, Eur. J. Inorg. Chem., 2000,
125, 7581; G. Guirado, C. Coudret, M. Hliwa and J. P. Launay, J. Phys.
Chem. B, 2005, 109, 17445; A. Peters and N. R. Branda, J. Am. Chem.
Soc., 2003, 125, 3404; A. Peters and N. R. Branda, Chem. Commun.,
2003, 954; B. Gorodetsky, H. D. Samachetty, R. L. Donkers,
M. S. Workentin and N. R. Branda, Angew. Chem., Int. Ed., 2004,
43, 2812; X.-H. Zhou, F.-S. Peng Yaun, S.-Z. Pu, F.-Q. Zhao and
C.-H. Tung, Chem. Lett., 2004, 33, 1006.
The electrochemical/photochemical properties of the diary-
lethene modified ITO electrodes reveal a robust system, where
redox and/or optical switching allows for write–read–erase
function (Scheme 2). The open form 1o-ITO can act as an
information recording interface. The information is ‘written’ either
photochemically or electrochemically (i.e. to produce the closed
form 1c-ITO) and the information stored can be erased
subsequently by either photochemical or electrochemical conver-
sion from 1c-ITO to 1o-ITO. The information is ‘read out’ non-
destructively by monitoring the reversible first oxidation of the
closed form electrochemically in the potential interval of 0.0 to
0.5 V as shown in Scheme 2 and Fig. 3. In the same potential
window the open form 1o-ITO is electrochemically inert.
In summary, the present communication demonstrates that
robust immobilisation of monolayers of dithienylethene switches
can be achieved on non-metallic conductive interfaces, without loss
of functionality. Furthermore the ability to drive ring-opening and
closing reactions oxidatively provides increased functionality to
these photochromic surfaces and a basis for read–write–erase
systems.
The authors thank the University of Groningen (Ubbo Emmius
scholarship J.A.), the NRSC-C program (W.R.B.) and the
Koerber Foundation (Hamburg, Germany, N.K.) for financial
support. We thank Dr. Johan Hjelm (Risoe National Laboratory,
Denmark) for suggestions and discussion.
10 W. R. Browne, J. J. D. de Jong, T. Kudernac, M. Walko, L. N. Lucas,
K. Uchida, J. H. van Esch and B. L. Feringa, Chem.–Eur. J., 2005, 11,
6414; W. R. Browne, J. J. D. de Jong, T. Kudernac, M. Walko,
L. N. Lucas, K. Uchida, J. H. van Esch and B. L. Feringa, Chem.–Eur.
J., 2005, 11, 6430.
11 K. Uchida, M. Saito, A. Murakami, T. Kobayashi, S. Nakamura and
M. Irie, Chem.–Eur. J., 2005, 11, 534.
12 J. J. D. de Jong, W. R. Browne, M. Walko, L. N. Lucas, L. J. Barrett,
J. J. McGarvey, J. H. van Esch and B. L. Feringa, Org. Biomol. Chem.,
2006, 4, 2387.
13 Z. F. Liu, K. Hashimoto and A. Fujishima, Nature, 1990, 347, 658;
E. Katz and I. Willner, Electrochem. Commun., 2006, 8, 879.
14 L. N. Lucas, J. J. D. de Jong, R. M. Kellog, J. H. van Esch and
B. L. Feringa, Eur. J. Org. Chem., 2003, 155.
15 Y.-J. Cho, T. K. Ahn, H. Song, K. S. Kim, C. Y. Lee, W. S. Seo, K. Lee,
S. K. Kim, D. Kim and J. T. Park, J. Am. Chem. Soc., 2005, 127, 2380.
16 I. Markovich and D. Mandler, J. Electroanal. Chem., 2000, 500, 453.
17 B. Fabre and D. D. M. Wayner, J. Electroanal. Chem., 2004, 567, 289;
C. A. Ferreira, S. Aeiyach, M. Delamar and P. C. Lacaze, Surf.
Interface Anal., 1993, 20, 749; C. Kolmel, G. Plam, R. Ahlrich, M. Bar
and A. I. Boldyrev, Chem. Phys. Lett., 1990, 173, 151.
Notes and references
1 B. L. Feringa, Molecular Switches, Wiley-VCH, Weinheim, Germany,
2001; M. A. Ratner and J. Jortner, Molecular Electronics, Blackwell,
Oxford, 1997; Y. Yokoyama, Chem. Rev., 2000, 100, 1717; B. L. Feringa,
R. A. van Delden, N. Koumura and E. M. Geertsema, Chem. Rev.,
2000, 100, 1789; Molecular Machines and Motors, ed. J.-P. Sauvage,
2001, vol. 99; M. Irie, Chem. Rev., 2000, 100, 1683; F. M. Raymo and
M. Tomasulo, Chem. Soc. Rev., 2005, 34, 327.
2 A. H. Flood, E. W. Wong and J. F. Stoddart, Chem. Phys., 2006, 324,
280; E. DeIonno, H.-R. Tseng, D. D. Harvey, J. F. Stoddart and
J. R. Heath, J. Phys. Chem. B, 2006, 110, 7609; S. J. van der Molen,
H. van der Vegte, T. Kudernac, I. Amin, B. L. Feringa and B. J. van
Wees, Nanotechnology, 2006, 17, 310; D. Dulic, S. J. van der Molen,
T. Kudernac, H. T. Jonkman, J. J. D. de Jong, T. N. Bowden, J. van
3932 | Chem. Commun., 2006, 3930–3932
This journal is ß The Royal Society of Chemistry 2006