Organic Letters
Letter
(10) For selected examples: (a) Halland, N.; Jørgensen, K. A.
Intermolecular addition of alkyl radicals to imines in the absence and
in the presence of a Lewis acid. J. Chem. Soc., Perkin Trans. 1 2001,
1290. (b) Ji, P.; Zhang, Y.; Wei, Y.; Huang, H.; Hu, W.; Mariano, P.
A.; Wang, W. Visible-Light-Mediated, Chemo- and Stereoselective
Radical Process for the Synthesis of C-Glycoamino Acids. Org. Lett.
2019, 21, 3086. (c) Kamimura, D.; Nagatomo, M.; Urabe, D.; Inoue,
M. Expanding the scope of Et3B/O2-mediated coupling reactions of
O,Te-acetal. Tetrahedron 2016, 72, 7839. (d) Matos, J. L. M.;
nation of Alkenes Mediated by a TEMPO−N3 Charge-Transfer
Complex. J. Am. Chem. Soc. 2018, 140, 12511.
(20) (a) Chen, J.; Zhu, S.; Qin, J.; Chu, L. Intermolecular, redox-
neutral azidoarylation of alkenes via photoredox catalysis. Chem.
Commun. 2019, 55, 2336. (b) Wang, J.-J.; Yu, W. Anti-Markovnikov
Hydroazidation of Alkenes by Visible-Light Photoredox Catalysis.
Chem. - Eur. J. 2019, 25, 3510. (c) Wei, W.; Cui, H.; Yue, H.; Yang, D.
Visible-light-enabled oxyazidation of alkenes leading to α-azidoke-
tones in air. Green Chem. 2018, 20, 3197. (d) Yang, B.; Lu, Z. Visible-
Light-Promoted Metal-Free Aerobic Hydroxyazidation of Alkenes.
ACS Catal. 2017, 7, 8362.
(21) Liu, Z.; Liu, Z.-Q. An Intermolecular Azidoheteroarylation of
Simple Alkenes via Free-Radical Multicomponent Cascade Reactions.
Org. Lett. 2017, 19, 5649.
(22) Lear, J. M.; Buquoi, J. Q.; Gu, X.; Pan, K.; Mustafa, D. N.;
Nagib, D. A. Multi-component heteroarene couplings via polarity-
reversed radical cascades. Chem. Commun. 2019, 55, 8820.
(23) (a) Huo, C.; Chen, F.; Yuan, Y.; Xie, H.; Wang, Y. Iron
Catalyzed Dual-Oxidative Dehydrogenative (DOD) Tandem Annu-
lation of Glycine Derivatives with Tetrahydrofurans. Org. Lett. 2015,
́
́
Vasquez-Cespedes, S.; Gu, J.; Oguma, T.; Shenvi, R. A. Branch-
Selective Addition of Unactivated Olefins into Imines and Aldehydes.
J. Am. Chem. Soc. 2018, 140, 16976.
́
(11) (a) Fernandez, M.; Alonso, R. Diastereoselective Intermolec-
ular Addition of the 1,3-Dioxolanyl Radical to N-Acyl Aldohydra-
zones. Asymmetric Synthesis of α-Amino Acid Derivatives. Org. Lett.
2003, 5, 2461. (b) Hashizume, S.; Oisaki, K.; Kanai, M. Catalytic
Migratory Oxidative Coupling of Nitrones. Org. Lett. 2011, 13, 4288.
(12) (a) Zeng, H.; Yang, S.; Li, H.; Lu, D.; Gong, Y.; Zhu, J.-T. Site-
Specific Functionalization of 1,3-Dioxolane with Imines: A Radical
Chain Approach to Masked α-Amino Aldehydes. J. Org. Chem. 2018,
83, 5256. (b) Yang, S.; Zhu, S.; Lu, D.; Gong, Y. Formylation of
Fluoroalkyl Imines through Visible-Light-Enabled H-Atom Transfer
Catalysis: Access to Fluorinated α-Amino Aldehydes. Org. Lett. 2019,
21, 2019.
̀
17, 5028. (b) Boglio, C.; Lemiere, G.; Hasenknopf, B.; Thorimbert,
̂
S.; Lacote, E.; Malacria, M. Lanthanide Complexes of the Monovacant
Dawson Polyoxotungstate [α1-P2W17O61]10− as Selective and
Recoverable Lewis Acid Catalysts. Angew. Chem., Int. Ed. 2006, 45,
3324. (c) He, Y.; Yan, B.; Tao, H.; Zhang, Y.; Li, Y. Metal-free
photocatalyzed aerobic oxidative Csp3−H functionalization of glycine
derivatives: one-step generation of quinoline-fused lactones. Org.
Biomol. Chem. 2018, 16, 3816. (d) Ghashghaei, O.; Masdeu, C.;
Alonso, C.; Palacios, F.; Lavilla, R. Recent advances of the Povarov
reaction in medicinal chemistry. Drug Discovery Today: Technol. 2018,
29, 71.
(13) (a) Vo, C.-V. T.; Luescher, M. U.; Bode, J. W. SnAP reagents
for the one-step synthesis of medium-ring saturated N-heterocycles
from aldehydes. Nat. Chem. 2014, 6, 310. (b) Luescher, M. U.; Vo,
C.-V. T.; Bode, J. W. SnAP Reagents for the Synthesis of Piperazines
and Morpholines. Org. Lett. 2014, 16, 1236. (c) Luescher, M. U.;
Bode, J. W. Catalytic Synthesis of N-Unprotected Piperazines,
Morpholines, and Thiomorpholines from Aldehydes and SnAP
Reagents. Angew. Chem., Int. Ed. 2015, 54, 10884.
(14) (a) Jackl, M. K.; Legnani, L.; Morandi, B.; Bode, J. W.
Continuous Flow Synthesis of Morpholines and Oxazepanes with
Silicon Amine Protocol (SLAP) Reagents and Lewis Acid Facilitated
Photoredox Catalysis. Org. Lett. 2017, 19, 4696. (b) Hsieh, S.-Y.;
Bode, J. W. Silicon Amine Reagents for the Photocatalytic Synthesis
of Piperazines from Aldehydes and Ketones. Org. Lett. 2016, 18, 2098.
(15) Wang, Y.-Y.; Bode, J. W. Olefin Amine (OLA) Reagents for the
Synthesis of Bridged Bicyclic and Spirocyclic Saturated N-Hetero-
cycles by Catalytic Hydrogen Atom Transfer (HAT) Reactions. J. Am.
Chem. Soc. 2019, 141, 9739.
(16) (a) Huang, D.; Yan, G. Recent Advances in Reactions of
Azides. Adv. Synth. Catal. 2017, 359, 1600. (b) Intrieri, D.; Zardi, P.;
Caselli, A.; Gallo, E. Organic azides: “energetic reagents” for the
intermolecular amination of C−H bonds. Chem. Commun. 2014, 50,
11440. (c) Minozzi, M.; Nanni, D.; Spagnolo, P. From Azides to
Nitrogen-Centered Radicals: Applications of Azide Radical Chemistry
to Organic Synthesis. Chem. - Eur. J. 2009, 15, 7830. (d) Scriven, E. F.
V.; Turnbull, K. Azides: their preparation and synthetic uses. Chem.
Rev. 1988, 88, 297.
(24) (a) Yamanaka, M.; Nishida, A.; Nakagawa, M. Imino Ene
Reaction Catalyzed by Ytterbium(III) Triflate and TMSCl or
TMSOTf. J. Org. Chem. 2003, 68, 3112. (b) Oliver, L. H.; Puls, L.
A.; Tobey, S. L. Brønsted acid promoted imino-ene reactions.
Tetrahedron Lett. 2008, 49, 4636.
(25) Zhu, H.-T.; Arosio, L.; Villa, R.; Nebuloni, M.; Xu, H. Process
Safety Assessment of the Iron-Catalyzed Direct Olefin Diazidation for
the Expedient Synthesis of Vicinal Primary Diamines. Org. Process Res.
Dev. 2017, 21, 2068.
(27) Note: butanedione (BD) was used as the catalyst for the
reaction of 5. Fluorenone is also able to promote this reaction;
however, it is similar in polarity and thus inseperable with product 6.
(28) Li, H.; Shen, S.-J.; Zhu, C.-L.; Xu, H. Direct Intermolecular
Anti-Markovnikov Hydroazidation of Unactivated Olefins. J. Am.
Chem. Soc. 2019, 141, 9415.
(29) For examples on trimethylsilyl-cation-activated imines:
(a) Kaboudin, B.; Moradi, K. TMSCl-Promoted Addition of Diethyl
Phosphite to an Imine for the Synthesis of Bis[1-
diethoxyphosphorylalkyl]amines. Synthesis 2006, 2006, 2339−2342.
(b) Downey, C. W.; Ingersoll, J. A.; Glist, H. M.; Dombrowski, C. M.;
Barnett, A. T. One-Pot Silyl Ketene Acetal-Formation Mukaiyama−
Mannich Additions to Imines Mediated by Trimethylsilyl Trifluor-
omethanesulfonate. Eur. J. Org. Chem. 2015, 2015, 7287−7291.
(17) Wu, K.; Liang, Y.; Jiao, N. Azidation in the Difunctionalization
of Olefins. Molecules 2016, 21, 352.
(18) (a) Chen, Y.; Tian, T.; Li, Z. Mn-Catalyzed azidation−
peroxidation of alkenes. Org. Chem. Front. 2019, 6, 632. (b) Hossain,
A.; Vidyasagar, A.; Eichinger, C.; Lankes, C.; Phan, J.; Rehbein, J.;
Reiser, O. Visible-Light-Accelerated Copper(II)-Catalyzed Regio- and
Chemoselective Oxo-Azidation of Vinyl Arenes. Angew. Chem., Int. Ed.
2018, 57, 8288. (c) Sun, X.; Li, X.; Song, S.; Zhu, Y.; Liang, Y.-F.;
Jiao, N. Mn-Catalyzed Highly Efficient Aerobic Oxidative Hydrox-
yazidation of Olefins: A Direct Approach to β-Azido Alcohols. J. Am.
Chem. Soc. 2015, 137, 6059. (d) Yuan, Y.-A.; Lu, D.-F.; Chen, Y.-R.;
Xu, H. Iron-Catalyzed Direct Diazidation for a Broad Range of
Olefins. Angew. Chem., Int. Ed. 2016, 55, 534.
(19) (a) Fu, N.; Sauer, G. S.; Saha, A.; Loo, A.; Lin, S. Metal-
catalyzed electrochemical diazidation of alkenes. Science 2017, 357,
575. (b) Siu, J. C.; Sauer, G. S.; Saha, A.; Macey, R. L.; Fu, N.;
́
Chauvire, T.; Lancaster, K. M.; Lin, S. Electrochemical Azidooxyge-
E
Org. Lett. XXXX, XXX, XXX−XXX