G Model
CATTOD-9776; No. of Pages8
ARTICLE IN PRESS
4
H.J. Parker et al. / Catalysis Today xxx (2015) xxx–xxx
1
CH-CH3), 7.58 (br. s, 1H, Ar-H), 8.20 (br. s, 2H, Ar-H, N = CH). 13C{ H}
(d, J = 8.3 Hz, 1H, Ar-H), 7.29 (dd, J = 7.7, 1.4 Hz, 1H, Ar-H), 7.32–7.38
1
(m, 1H, Ar-H), 8.42 (s, 1H, N = CH). 13C{ H} NMR: (CDCl3, 75 MHz):
NMR: (CDCl3, 75 MHz): ı 24.2, 24.5, 25.6, 32.6, 63.4, 78.9, 80.5,
141.4, 150.8, 161.8. 51V NMR (CDCl3, 132 MHz): ı −562.4. Elemen-
tal Analysis: Anal. Calcd for C13H16I2NO4V: C, 28.13; H, 2.91; N,
2.52. Found: C, 28.00; H, 2.79; N, 2.57.
ı 33.5, 55.8, 60.2, 117.1, 118.5, 131.3, 132.3, 161.4, 165.3. ESI-MS:
m/z calcd for [C10H14NO2]+: 180.1025; found: 180.1025.
N-(3-Hydroxypropyl)-3,5-di-tert-butylsalicylaldimine: (5H2)
1H NMR: (CDCl3, 250 MHz): ı 1.32 (s, 9H, CH3), 1.45 (s, 9H, CH3),
1.98 (quin, J = 6.3 Hz, 2H, CH2), 3.72 (td, J = 6.6, 1.3 Hz, 2H, N-CH2),
3.79 (t, J = 6.3 Hz, 2H, CH2-OH), 7.10 (d, J = 2.5 Hz, 1H, Ar-H), 7.39
(d, J = 2.5 Hz, 1H, Ar-H), 8.40 (t, J = 1.3 Hz, 1H, N = CH), 13.82 (br. s,
VO(4)(OiPr): 1H NMR (CDCl3, 300 MHz): ı 1.37 (d, J = 6.4 Hz, 3H,
CH-CH3), 1.43 (d, J = 6.4 Hz, 3H, CH-CH3), 1.82–1.99 (m, 1H, CH2),
2.19–2.31 (m, 1H, CH2), 3.91 (d, J = 12.4 Hz, 1H, CH2), 4.42 (tt, J = 12.3,
2.2 Hz, 1H, CH2), 4.74–4.90 (m, 1H, CH2), 5.40–5.63 (m, 2H, CH2, CH-
CH3), 6.77–6.86 (m, 1H, Ar-H), 6.89 (d, J = 8.3 Hz, 1H, Ar-H), 7.26 (dd,
J = 7.5, 1.9 Hz, 1H, Ar-H), 7.38 (ddd, J = 8.6, 7.1, 1.7 Hz, 1H, Ar-H), 8.29
1
1H, Ar-OH). 13C{ H} NMR: (CDCl3, 75 MHz): ı 29.4, 31.5, 33.5, 34.2,
35.1, 55.9, 60.3, 117.8, 125.8, 126.9, 136.7, 140.0, 158.2, 166.4. ESI-
MS: m/z calcd for [C18H28NO2]−: 290.2120; found: 290.2121.
N-(3-Hydroxypropyl)-3-(1-adamantyl)-5-
(br. s., 1H, N-CH). 13C{ H} NMR: (CDCl3, 75 MHz): ı 24.1, 32.7, 63.4,
1
80.1, 83.0, 118.9, 132.8, 134.9, 163.1. 51V NMR (CDCl3, 105 MHz): ı
−556.8. Elemental Analysis: Anal. Calcd for C13H18NO4V: C, 51.49;
H, 5.98; N, 4.62. Found: C, 51.32; H, 5.84; N, 4.66.
methylsalicylaldimine: (6H2) 1H NMR: (CD3OD, 300 MHz): ı
1.85–1.91 (m, 6H, Ad-H), 1.99 (quin, J = 6.7 Hz, 2H, CH2), 2.09–2.16
(m, 3H, Ad-H), 2.22–2.27 (m, 6H, Ad-H), 2.32 (s, 3H, CH3), 3.75
(t, J = 6.4 Hz, 4H, CH2-OH, N-CH2), 7.02 (d, J = 1.3 Hz, 1H, Ar-H),
VO(5)(OiPr): 1H NMR (CDCl3, 300 MHz): ı 1.25 (s, 9H, C(CH3)3),
1.37–1.43 (m, 15H, C(CH3)3 (9H), CH(CH3)2 (6H)), 1.82–1.91 (m,
1H, CH2), 2.13–2.24 (m, 1H, CH2), 3.80–3.91 (m, 1H, CH2), 4.35 (t,
J = 11.7 Hz, 1H, CH2), 4.70–4.85 (m, 1H, CH2), 5.43 (t, J = 12.4 Hz, 1H,
CH2), 5.63 (spt, J = 6.0 Hz, 1H, CH(CH3)2), 7.09 (d, J = 2.6 Hz, 1H, Ar-
1
7.11 (d, J = 1.8 Hz, 1H, Ar-H), 8.46 (s, 1H, N = CH). 13C{ H} NMR:
(CD3OD, 75 MHz): ı 20.9, 30.7, 35.0, 38.1, 38.4, 41.6, 56.9, 60.5,
120.0, 128.0, 130.7, 131.3, 138.4, 159.7, 167.9. ESI-MS: m/z calcd
for [C21H29NO2Na]+: 350.2096; found: 350.2089.
1
H), 7.46 (d, J = 2.6 Hz, 1H, Ar-H), 8.27 (br. s, 1H, N = CH). 13C{ H}
N-(3-Hydroxypropyl)-3-trityl-5-methylsalicylaldimine:
(7H2) 1H NMR: (DMSO-d6, 400 MHz): ı 1.71 (quin, J = 6.6 Hz, 2H,
CH2), 2.21 (s, 3H, CH3), 3.42 (t, J = 6.3 Hz, 4H, CH2-OH, N-CH2), 7.06
(d, J = 2.0 Hz, 1H, Ar-H), 7.13–7.21 (m, 9H, Ar-H), 7.23 (d, J = 1.8 Hz,
NMR (CDCl3, 75 MHz): ı 24.6, 24.9, 25.4, 29.5, 31.5, 32.1, 32.9, 34.2,
35.2, 63.4, 127.0, 129.6, 141.0, 163.8. 51V NMR (CDCl3, 105 MHz): ı
−568.8. Elemental Analysis: Anal. Calcd for C21H34NO4V: C, 60.71;
H, 8.25; N, 3.37. Found: C, 60.51; H, 8.88; N, 4.10.
1
1H, Ar-H), 7.28 (t, J = 7.3 Hz, 6H, Ar-H), 8.50 (s, 1H, N = CH). 13C{ H}
VO(6)(OiPr): 1H NMR (CDCl3, 300 MHz): ı 1.45 (d, J = 6.0 Hz, 3H,
CH-CH3), 1.53 (d, J = 6.0 Hz, 3H, CH-CH3), 1.76 (d, J = 11.7 Hz, 3H, Ad-
H), 1.86 (d, J = 11.7 Hz, 3H, Ad-H), 1.89–2.00 (m, 1H, CH2), 2.04–2.11
(m, 3H, Ad-H), 2.14–2.22 (m, 6H, Ad-H), 2.22–2.29 (m, 1H, CH2),
2.32 (s, 3H, CH3), 3.92 (dt, J = 12.3, 3.5 Hz, 1H, CH2), 4.43 (tt, J = 12.6,
1.9 Hz, 1H, CH2), 4.82–4.93 (m, 1H, CH2), 5.50–5.59 (m, 2H, CH2,
CH-CH3), 6.99 (d, J = 1.6 Hz, 1H, Ar-H), 7.23 (d, J = 2.2 Hz, 1H, Ar-
NMR: (CDCl3, 75 MHz): ı 20.8, 21.5, 33.3, 55.8, 60.3, 63.2, 118.6,
125.3, 125.5, 126.1, 127.2, 128.3, 129.1, 130.7, 131.1, 134.4, 134.5,
145.6, 158.0. ESI-MS: m/z calcd for [C30H29NO2Na]+: 458.2096;
found: 458.2102.
2.3.4. Catalyst synthesis
H), 8.28 (br. s., 1H, N-CH). 13C{ H} NMR (CDCl3, 125 MHz): ı 19.7,
1
General procedure: Catalyst syntheses were conducted
using glove box and Schlenk line techniques under an atmo-
sphere of argon. In a glove box, equimolar amounts of the
ligand and VO(OiPr)3 were dissolved separately in anhydrous
dichloromethane. The ligand solution was added dropwise to the
metal solution and the reaction mixture was stirred for 0.5 h. The
solvent was removed in vacuo and recrystallization was attempted
from hexane, toluene or dichloromethane.
23.5, 23.9, 28.1, 31.8, 36.0, 39.2, 62.4, 78.7, 84.1, 118.4, 126.9, 129.4,
132.1, 162.3. 51V NMR (CDCl3, 105 MHz): ı −556.4.
VO(7)(OiPr): 1H NMR (CDCl3, 500 MHz): ı 1.06 (d, J = 6.0 Hz, 3H,
CH-CH3), 1.26 (d, J = 6.0 Hz, 3H, CH-CH3), 1.80–1.93 (m, 1H, CH2),
2.17 (d, J = 13.2 Hz, 1H, CH2), 2.27 (s, 3H, CH3), 3.86 (d, J = 11.7 Hz,
1H, CH2), 4.33 (t, J = 12.0 Hz, 1H, CH2), 4.66–4.79 (m, 1H, CH-CH3),
4.88–4.98 (m, 1H, CH2), 5.33 (t, J = 11.0 Hz, 1H, CH2), 7.04–7.40 (m,
VO(1)(OiPr): Recrystallized from dichloromethane. 1H NMR
(CDCl3, 300 MHz): 1.46 (d, J = 6.0 Hz, 3H, CH-CH3), 1.55 (d, J = 6.4 Hz,
3H, CH-CH3), 1.93–2.11 (m, 1H, CH2), 2.32–2.43 (m, 1H, CH2),
3.95–4.10 (m, 1H, CH2), 4.55 (t, J = 12.2 Hz, 1H, CH2), 4.92 (d,
J = 7.9 Hz, 1H, CH2), 5.65 (t, J = 11.1 Hz, 1H, CH2), 5.83 (spt, J = 6.8 Hz,
1H, CH-CH3), 7.22 (d, J = 2.6 Hz, 1H, Ar-H), 7.54 (d, J = 2.3 Hz, 1H, Ar-
17H, Ar-H), 8.25 (br. s., 1H, N = CH). 13C{ H} NMR (CDCl3, 75 MHz):
1
ı 20.8, 24.1, 24.4, 32.3, 63.5, 79.1, 84.9, 125.3, 127.1, 127.3, 131.1,
132.1, 136.8, 163.3. 51V NMR (CDCl3, 132 MHz): ı −562.6. Elemental
Analysis: Anal. Calcd for C33H34NO4V: C, 70.83; H, 6.12; N, 2.50.
Found: C, 70.71; H, 6.24; N, 2.57.
1
H), 8.31 (br. s., 1H, N = CH). 13C{ H} NMR: (CDCl3, 75 MHz): ı 24.0,
32.6, 63.6, 80.4, 130.3, 134.2, 162.1. 51V NMR (CDCl3, 105 MHz):
ı −563.1. Elemental Analysis: Anal. Calcd for C13H16Cl2NO4V: C,
41.96; H, 4.33; N, 3.76. Found: C, 41.83; H, 4.46; N, 3.84.
3. Results and discussion
3.1. Catalyst synthesis and characterization
VO(2)(OiPr): Recrystallized from dichloromethane. 1H NMR
(CDCl3, 300 MHz): ı 1.39 (d, J = 6.0 Hz, 3H, CH-CH3), 1.48 (d,
J = 6.0 Hz, 3H, CH-CH3), 1.86–2.04 (m, 1H, CH2), 2.22–2.35 (m, 1H,
CH2), 3.94 (d, J = 12.4 Hz, 1H, CH2), 4.47 (t, J = 12.2 Hz, 1H, CH2),
4.84 (d, J = 9.0 Hz, 1H, CH2), 5.56 (td, J = 11.2, 2.8 Hz, 1H, CH2),
5.75–5.88 (m, 1H, CH-CH3), 7.32 (d, J = 2.3 Hz, 1H, Ar-H), 7.76 (d,
Tridentate salen ligands 1H2–7H2 were synthesized via con-
densation of the relevant aldehyde with 3-amino-1-propanol.
Subsequent reaction of the ligands with vanadium oxytriiso-
propoxide under an inert atmosphere gave rise to vanadium(V)
complexes VO(1–7)(OiPr), Fig. 3. The catalysts were analyzed by
1
1
J = 2.3 Hz, 1H, Ar-H), 8.20 (br. s., 1H, N = CH). 13C{ H} NMR: (CDCl3,
1H, 13C{ H} and 51V NMR spectroscopy, and solid state structures
75 MHz): ı 24.2, 32.6, 63.5, 80.5, 109.3, 134.1, 139.7, 162.0. 51V
NMR (CDCl3, 105 MHz): ı −563.2. Elemental Analysis: Anal. Calcd
for C13H16Br2NO4V: C, 33.87; H, 3.50; N, 3.04. Found: C, 33.72; H,
3.40; N, 2.98.
were obtained for several of the species by single-crystal X-ray
diffraction.
The complexes were isolated as red crystalline samples in mod-
erate to good yields. For complexes VO(1–5)(OiPr) the solid state
structures were determined by single crystal X-ray diffraction,
Fig. 4. In the solid state the complexes are dimeric with the aliphatic
alcohol bridging between the two vanadium centres. In all cases the
vanadium atoms are in pseudo octahedral environments and the
metric data are consistent with vanadium(V) complexes, Table 1.
VO(3)(OiPr): Recrystallized from toluene. 1H NMR (CDCl3,
500 MHz): ı 1.50 (d, J = 6.0 Hz, 3H, CH-CH3), 1.58 (d, J = 6.0 Hz, 3H,
CH-CH3), 2.03 (q, J = 12.3 Hz, 1H, CH2), 2.35 (d, J = 12.9 Hz, 1H, CH2),
4.00 (d, J = 12.0 Hz, 1H, CH2), 4.52 (t, J = 12.6 Hz, 1H, CH2), 4.90 (d,
J = 9.8 Hz, 1H, CH2), 5.61 (t, J = 10.6 Hz, 1H, CH2), 5.90–6.03 (m, 1H,
Please cite this article in press as: H.J. Parker, et al., Degradation of -O-4 model lignin species by vanadium Schiff-
base catalysts: Influence of catalyst structure and reaction conditions on activity and selectivity, Catal. Today (2015),