Organic Letters
Letter
(4) (a) Gammill, R. B. The synthesis and chemistry of functionalized
furochromones. 2. The synthesis, Sommelet-Hauser rearrangement,
and conversion of 4,9-dimethoxy-7-[(methylthio)methyl]-5H-furo-
(3,2-g)benzopyran-5-one to ammiol. J. Org. Chem. 1984, 49, 5035−
5041. (b) Sano, T.; Toda, J.; Maehara, N.; Tsuda, Y. Synthesis of
erythrina and related alkaloids. 17. Total synthesis of dl-coccuvinine
and dl-coccolinine. Can. J. Chem. 1987, 65, 94−98. (c) Evans, D. A.;
Rieger, D. L.; Jones, T. K.; Kaldor, S. W. Assignment of
stereochemistry in the oligomycin/rutamycin/cytovaricin family of
antibiotics. Asymmetric synthesis of the rutamycin spiroketal synthon.
J. Org. Chem. 1990, 55, 6260−6268. (d) Toyota, M.; Odashima, T.;
Wada, T.; Ihara, M. Application of palladium-catalyzed cyclo-
alkenylation reaction to C20 gibberellin synthesis: Formal syntheses
of GA12, GA111, and GA112. J. Am. Chem. Soc. 2000, 122, 9036−9037.
(5) (a) Doering, W. v. E.; Aschner, T. C. Mechanism of the alkoxide-
catalyzed carbinol−carbonyl equilibrium. J. Am. Chem. Soc. 1953, 75,
393−397. (b) Moulton, W. N.; Van Atta, R. E.; Ruch, R. R.
Mechanism of the Meerwein−Ponndorf−Verley reduction. J. Org.
Chem. 1961, 26, 290−292. (c) Yager, B. J.; Hancock, C. K.
Equilibrium and kinetic studies of the Meerwein−Ponndorf−
Verley−Oppenauer (MPVO) reaction. J. Org. Chem. 1965, 30,
1174−1179. (d) Screttas, C. G.; Cazianis, C. T. Mechanism of
Meerwein−Ponndorf−Verley type reductions. Tetrahedron 1978, 34,
933−940. (e) Ashby, E. C.; Argyropoulos, J. N. Single electron
transfer in the Meerwein−Ponndorf−Verley reduction of benzophe-
none by lithium alkoxides. J. Org. Chem. 1986, 51, 3593−3597.
(f) Shiner, V. J., Jr.; Whittaker, D. Kinetics of the Meerwein−
Ponndorf−Verley reaction. J. Am. Chem. Soc. 1969, 91, 394−398.
(6) (a) Cohen, R.; Graves, C. R.; Nguyen, S. T.; Martin, J. M. L.;
Ratner, M. A. The mechanism of aluminum-catalyzed Meerwein−
Schmidt−Ponndorf−Verley reduction of carbonyls to alcohols. J. Am.
Chem. Soc. 2004, 126, 14796−14803. (b) Boronat, M.; Corma, A.;
Renz, M. Mechanism of the Meerwein−Ponndorf−Verley−Oppena-
uer (MPVO) redox equilibrium on Sn− and Zr−beta zeolite catalysts.
J. Phys. Chem. B 2006, 110, 21168−21174. (c) Sominsky, L.;
Rozental, E.; Gottlieb, H.; Gedanken, A.; Hoz, S. Uncatalyzed
Meerwein−Ponndorf−Oppenauer−Verley reduction of aldehydes
and ketones under supercritical conditions. J. Org. Chem. 2004, 69,
1492−1496.
(7) (a) Kow, R.; Nygren, R.; Rathke, M. W. Rate enhancement of
the Meerwein−Ponndorf−Verley−Oppenauer reaction in the pres-
ence of proton acids. J. Org. Chem. 1977, 42, 826−827.
(b) Akamanchi, K. G.; Varalakshmy, N. R. Aluminium isopropoxide
- TFA, a modified catalyst for highly accelerated Meerwein−
Ponndorf−Verley (MPV) reduction. Tetrahedron Lett. 1995, 36,
3571−3572. (c) Akamanchi, K. G.; Varalakshmy, N. R. Truly catalytic
Meerwein−Ponndorf−Verley (MPV) reduction. Tetrahedron Lett.
1995, 36, 5085−5088.
(8) Barbry, D.; Torchy, S. Accelerated reduction of carbonyl
compounds under microwave irradiation. Tetrahedron Lett. 1997, 38,
2959−2960.
(9) (a) Graves, C. R.; Scheidt, K. A.; Nguyen, S. T. Enantioselective
MSPV reduction of ketimines using 2-propanol and (BINOL)AlIII.
Org. Lett. 2006, 8, 1229−1232. (b) Campbell, E. J.; Zhou, H.;
Nguyen, S. T. The asymmetric Meerwein−Schmidt−Ponndorf−
Verley reduction of prochiral ketones with iPrOH catalyzed by Al
catalysts. Angew. Chem., Int. Ed. 2002, 41, 1020−1022.
their catalytical activity in Meerwein−Ponndorf−Verley−Oppenauer
reactions. J. Org. Chem. 1984, 49, 2045−2049. (c) Okano, T.;
Matsuoka, M.; Konishi, H.; Kiji, J. Meerwein−Ponndorf−Verley
reduction of ketones and aldehydes catalyzed by lanthanide tri-2-
propoxides. Chem. Lett. 1987, 16, 181−184. (d) Evans, D. A.; Nelson,
́
S. G.; Gagne, M. R.; Muci, A. R. A chiral samarium-based catalyst for
the asymmetric Meerwein−Ponndorf−Verley reduction. J. Am. Chem.
Soc. 1993, 115, 9800−9801. (e) Molander, G. A.; McKie, J. A.
Samarium(II) iodide induced sequential intramolecular nucleophilic
acyl substitution and stereospecific intramolecular Meerwein−
Ponndorf−Verley reduction/Oppenauer oxidation. J. Am. Chem. Soc.
1993, 115, 5821−5822. (f) Xianming, H.; Kellogg, R. M. Asymmetric
reduction and Meerwein−Ponndorf−Verley reaction of prochiral
aromatic ketones in the presence of optically pure 1-aryl-2,2-
dimethylpropane-1,3-diols. Recl. Trav. Chim. Pays-Bas. 1996, 115,
410−417.
(13) (a) Ouali, A.; Majoral, J.-P.; Caminade, A.-M.; Taillefer, M.
NaOH-promoted hydrogen transfer: Does NaOH or traces of
transition metals catalyze the reaction? ChemCatChem 2009, 1,
504−509. (b) Polshettiwar, V.; Varma, R. S. Revisiting the
Meerwein−Ponndorf−Verley reduction: a sustainable protocol for
transfer hydrogenation of aldehydes and ketones. Green Chem. 2009,
11, 1313−1316. (c) Radhakrishan, R.; Do, D. M.; Jaenicke, S.; Sasson,
Y.; Chuah, G.-K. Potassium phosphate as a solid base catalyst for the
catalytic transfer hydrogenation of aldehydes and ketones. ACS Catal.
2011, 1, 1631−1636.
(14) Mojtahedi, M. M.; Akbarzadeh, E.; Sharifi, R.; Abaee, M. S.
Lithium bromide as a flexible, mild, and recyclable reagent for solvent-
free Cannizzaro, Tishchenko, and Meerwein−Ponndorf−Verley
reactions. Org. Lett. 2007, 9, 2791−2793.
(15) Under the conditions reported by Chuah and co-workers (ref
12c), only cyclohexanone, 4-tert-butyl cyclohexanone, and acetophe-
none were evaluated for reactivity using K3PO4/i-PrOH affording the
respective alcohol products in 55%, 30%, and 38% yield.
(16) Subjecting dihydrochalcone (1) to previously reported
conditions for the reduction of ketones using catalytic K3PO4 using
i-PrOH as a solvent gave the desired product 2 in only 47% yield.
(17) Although 1,4-dioxane was chosen for these studies, we found
other solvents could be employed (see SI for details).
(18) K3PO4 is roughly 103 less basic than NaOH and KOH: for the
pKa of KH2PO4 and H2O, respectively, see: (a) Bruice, P. Y. Organic
Chemistry, 6th ed.; Prentice Hall: Boston, 2011. (b) Bordwell, F. G.
Equilibrium acidities in dimethylsulfoxide solution. Acc. Chem. Res.
1988, 21, 456−463.
(19) Using DFT calculations (M06-2X/6-31G(d)), we estimate that
the conversion of 1 and 5 to 2 and reduced 5 is thermodynamically
favorable by ∼2 kcal/mol.
(20) Previous reports on the base-mediated MPV reductions of
ketones using NaOH and KOH have shown only a handful of
heterocyclic substrates undergoing reduction (see refs 12a, b). The
base-mediated MPV reduction of heterocyclic ketones using K3PO4
has not been previously reported.
(21) Subjecting N-containing heterocyclic ketones such as N-MOM
4-acetyl indole and 4-acetyl pyridine to base-mediated MPV reduction
conditions led to lower yields of the products (20% and 11% yield,
respectively).
(22) Dibenzofurans have found application in OLEDs, bioactive
molecules, and chemical probes: (a) Kim, S.-Y.; Hwang, S.-H.; Kim,
Y.-K.; Jung, H.-J.; Lim, J.-O.; Han, S.-H.; Jeong, E.-J.; Park, J.-H.; Lee,
E.-Y.; Lee, B.-R.; Lee, J.-H. Condensed-cyclic compound and organic
light-emitting device. U.S. Patent 20180248127, Jul. 25, 2012.
(b) Patpi, S. R.; Pulipati, L.; Yogeeswari, P.; Sriram, D.; Jain, N.;
Sridhar, B.; Murthy, R.; Devi, T. A.; Kalivendi, S. V.; Kantevari, S.
Design, synthesis, and structure−activity correlations of novel
dibenzo[b,d]furan, dibenzo[b,d]thiophene, and N-methylcarbazole
clubbed 1,2,3-triazoles as potent inhibitors of Mycobacterium tuber-
culosis. J. Med. Chem. 2012, 55, 3911−3922. (c) Liu, L.-X.; Wang, X.-
Q.; Yan, J.-M.; Li, Y.; Sun, C.-J.; Chen, W.; Zhou, H.-B.; Yang, X.-D.
Synthesis and antitumor activities of novel dibenzo[b,d]furan−
(10) (a) Midland, M. M.; Tramontano, A. B-Alkyl-9-borabicyclo-
[3.3.1]nonanes as mild, chemoselective reducing agents for aldehydes.
J. Org. Chem. 1978, 43, 1470−1471. (b) Chandrasekharan, J.;
Ramachandran, P. V.; Brown, H. C. Diisopinocampheylchloroborane,
a remarkably efficient chiral reducing agent for aromatic prochiral
ketones. J. Org. Chem. 1985, 50, 5446−5448.
(11) Krohn, K.; Knauer, B. The diastereoselectivity of zirconium
alkoxide catalysed Meerwein−Ponndorf−Verley reductions. Liebigs
Ann. 1995, 1347−1351.
(12) (a) Kagan, H. B.; Namy, J. L. Lanthanides in organic synthesis.
Tetrahedron 1986, 42, 6573−6614. (b) Namy, J. L.; Souppe, J.;
Collin, J.; Kagan, H. B. New preparations of lanthanide alkoxides and
D
Org. Lett. XXXX, XXX, XXX−XXX