C O M M U N I C A T I O N S
Scheme 2. Total Synthesis of (()-Chartelline Ca
a Reagents and conditions: (a) 12 (0.9 equiv), CuI (0.2 equiv), Pd(PPh3)4 (0.1 equiv), DME/Et3N (1:1), 50 °C, 7 h, 85%; (b) Raney Ni, MeOH, 20 °C,
5 h, 80%; (c) TBAF (1.1 equiv), THF, 20 °C, 4 h; (d) MnO2 (20 equiv), CH2Cl2, 20 °C, 8 h, 60% overall; (e) LiOH‚H2O (3 equiv), THF/H2O 4:1, 20 °C,
3.5 h; (f) 15 (2.6 equiv), BOPCl (1.5 equiv), DIPEA (2 equiv), CH2Cl2, 0 °C, 9 h, 89% overall; (g) LiCl (10 equiv), DIPEA (20 equiv), MeCN, 70 °C, 6
h, 56%; (h) Br2, (1.0 equiv), CaCO3 (20 equiv), PhH, 20 °C, 6 h; then NBA (1 equiv), PhH, 20 °C, 12 h, 36%, 60% (see above); (i) 185 °C, 1.5 min (×
4); MeCN, 3 Å m.s., NBS (1 equiv), 20 °C; then 18-C-6, K2CO3, 20 °C, 1 h; then NaHCO3 (sat. aq), then brine, 15 min, 93% (j) TFA/DCE 1:1, 20 °C, 4
h; o-DCB, 200 °C, 5 min, 64%.
Scheme 3. C-20 Hydroxy-Pyrroloindoline Formed During the
Rearrangement of 6 f 4
References
(1) For the debut of a chartelline alkaloid, see (a) Chevolot, L.; Chevolot,
A.-M.; Gajhede, M.; Larsen, C.; Anthoni, U.; Christophersen, C. J. Am.
Chem. Soc. 1985, 107, 4542-4543. For the isolation of chartelline C,
see (b) Anthoni, U.; Chevolot, L.; Larsen, C.; Nielsen, P. H.; Christo-
phersen, C. J. Org. Chem. 1987, 52, 4709-4712.
(2) For studies towards the chartellines and related alkaloids, see: (a) Lin,
X.; Weinreb, S. M. Tetrahedron Lett. 2001, 42, 2631-2633. (b) Chaffee,
S. C. PhD Thesis, Yale University, 2001. (c) Lin, X. Ph.D. Thesis,
Pennsylvania State University, 2002. (d) Pinder, J. L.; Weinreb, S. M.
Tetrahedron Lett. 2003, 44, 4141-4143. (e) Korakas, P. Ph.D. Thesis,
Yale University, 2003. (f) Nishikawa, T.; Kajii, S.; Isobe, M. Chem. Lett.
2004, 33, 440-441. (g) Korakas, P.; Chaffee, S.; Shotwell, J. B.; Duque,
P.; Wood, J. L. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12054-12057.
(h) Nishikawa, T.; Kajii, S.; Isobe, M. Synlett 2004, 2025-2027. (i) Rohde,
J. Ph.D. Thesis, The Scripps Research Institute, 2005. (j) Sun, C.; Lin,
X.; Weinreb, S. M. J. Org. Chem. 2006, 71, 3159-3166. (k) Sun, C.;
Camp, J. E.; Weinreb, S. M. Org. Lett. 2006, 8, 1779-1781.
(3) Baran, P. S.; Shenvi, R. A.; Mitsos, C. A. Angew. Chem., Int. Ed. 2005,
44, 3714-3717.
The longstanding synthetic challenge posed by the chartelline
alkaloids has been answered for the first time by a short route
influenced by a logical biosynthetic rationale. The idiosyncratic
facility with which certain steps proceed (e.g. 18 f 22, 23 f 1)
points to possible intermediates in a chartelline biosynthesis.
Highlights of this 10 step (from 11) synthesis include (1) chemo-
and position-selective installation of the heteroaromatic halogens,
(2) halogen-sparing monoreduction of alkyne 13, (3) a simple
strategy for placement of the sensitive â-chloroenamide, (4)
unusually facile thermolysis of a vinyl carboxylic acid, and (5) a
powerful ring contraction (18 f 22) whose potential utility in
heterocyclic chemistry merits further investigation.
(4) (a) Dieck, H. A.; Heck, R. F. J. Organomet. Chem. 1975, 93, 259-263.
(b) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975,
4467-4470.
(5) Prepared in four steps (50% yield) from O-TBS D,L-serine methyl ester,
see ref 3.
(6) Prepared in six steps (44% yield) from 6-bromoindole.
(7) Wood, J. L.; Thompson, B. D.; Yusuff, N.; Pflum, D. A.; Mattha¨us, M.
S. P. J. Am. Chem. Soc. 2001, 123, 2097-2098.
(8) Confirmed unequivocally by X-ray diffraction spectroscopy. 1H NMR,
13C NMR, HMQC, HMBC, HPLC, HRMS, IR, and TLC are included in
Supporting Information.
Acknowledgment. Mr. Steven Nguyen and Dr. Christos Mitsos
are gratefully acknowledged for their technical contributions. We
thank Dr. D.-H. Huang and Dr. L. Pasternack for NMR spectro-
scopic assistance and Dr. G. Siuzdak and Dr. R. Chadha for mass
spectrometric and X-ray crystallographic assistance, respectively.
Financial support for this work was provided by The Scripps
Research Institute, Amgen, AstraZeneca, Bristol-Myers Squibb,
DuPont, Eli Lilly, GlaxoSmithKline, Roche, the Searle Scholarship
Fund, the Sloan Foundation, the NSF (Career), and the Department
of Defense (predoctoral fellowship to R.A.S.).
(9) Li, J.; Brill, T. B. J. Phys. Chem. A 2003, 107, 2667-2673.
(10) For early implications of 1,5 sigmatropy via 2H-indoles, see (a) Hugel,
G.; Royer, D.; Sigaut, F.; Le´vy, J. J. Org. Chem. 1991, 56, 4631-4636.
(b) Gu¨ller, R.; Borschberg, H.-J. Tetrahedron Lett. 1994, 35, 865-868.
For elegant work on related indole-2-ones, see (c) Funk, R. L.; Fuchs, J.
R. Org. Lett. 2005, 7, 677-680.
(11) Conformational effects and π-stacking interactions are also believed to
contribute significantly to the energetic landscape, as well as to determine
the regiochemical outcome of the reaction, that is, which C-2 substituent
shifts.
(12) For the execution of this rearrangement, see Baran, P. S.; Richter, J. M.
Supporting Information Available: Detailed experimental pro-
cedures, copies of all spectral data, and full characterization. This
J. Am. Chem. Soc. 2005, 127, 15394-15396.
JA0659673
9
J. AM. CHEM. SOC. VOL. 128, NO. 43, 2006 14029