are clearly perturbed in such a way that the presence of two CF3
substituents (L2) prevents formation of a Cu/O2 intermediate.
Further, the theoretical comparisons for oxygenation of (L, L1
or L2)Cu(CH3CN) indicate that the formation of an end-on 1 : 1
Cu/O2 adduct requires a less-donating b-diketiminate ligand (such
as L2), though this in itself proves to be an experimental obstacle
given that such ligands give rise to an endergonic oxygenation
process. Thus, future efforts in developing a bidentate ligand
that supports an end-on 1 : 1 Cu/O2 adduct face the challenge
of balancing suitable ligand electronics with experimentally fea-
sible (thermodynamically favorable) oxygenation of the Cu(I)
complex.
13 (a) C. X. Zhang, S. Kaderli, M. Costas, E. Kim, Y.-M. Neuhold, K. D.
Karlin and A. D. Zuberbu¨hler, Inorg. Chem., 2003, 42, 1807; (b) J.
Shearer, C. X. Zhang, L. N. Zakharov, A. L. Rheingold and K. D.
Karlin, J. Am. Chem. Soc., 2005, 127, 5469.
14 M. J. Henson, M. A. Vance, C. X. Zhang, H.-C. Liang, K. D. Karlin
and E. I. Solomon, J. Am. Chem. Soc., 2003, 125, 5186.
15 A. J. Johansson, M. R. A. Blomberg and P. E. M. Siegbahn, Inorg.
Chem., 2006, 45, 1491.
16 T. Osako, S. Terada, T. Tosha, S. Nagatomo, H. Furutachi, S. Fujinami,
T. Kitagawa, M. Suzukib and S. Itoh, Dalton Trans., 2005, 3514.
17 H. V. R. Dias and T. K. H. H. Goh, Polyhedron, 2004, 23, 273, and
references cited therein.
18 (a) Z. Hu, R. D. Williams, D. Tran, T. G. Spiro and S. M. Gorun, J. Am.
Chem. Soc., 2000, 122, 3556; (b) Z. Hu, G. N. George and S. M. Gorun,
Inorg. Chem., 2001, 40, 4812.
19 G. Aullo´n, S. M. Gorun and S. Alvarez, Inorg. Chem., 2006, 45, 3594.
20 D. S. Laitar, C. J. N. Mathison, W. M. Davis and J. P. Sadighi, Inorg.
Chem., 2003, 42, 7354.
21 H. V. R. Dias and S. Singh, Inorg. Chem., 2004, 43, 5786.
22 J. A. J. Jarvis, R. Pearce and M. F. Lappert, J. Chem. Soc., Dalton
Trans., 1977, 999.
23 D. T. Carey, E. K. Cope-Eatough, E. Vilaplana-Mafe´, F. S. Mair, R. G.
Pritchard, J. E. Warren and R. J. Woods, Dalton Trans., 2003, 1083.
24 D. J. E. Spencer, N. W. Aboelella, A. M. Reynolds, P. L. Holland and
W. B. Tolman, J. Am. Chem. Soc., 2002, 124, 2108.
25 N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877.
26 SMART v5.054, Bruker Analytical X-Ray Systems, Madison, WI,
2001.
Acknowledgements
We thank the NIH (Grant GM47365 to W. B. T., Grant NRSA-
GM070144 to B. F. G.) and the NSF (Grant CHE-0203346 to
C. J. C.) for financial support. We also thank Dr Victor G. Young,
Jr. for assistance with X-ray data collection and refinement, and
Professor Lawrence Que, Jr. for the use of resonance Raman spec-
troscopy instrumentation. Elizabeth Devine and Nicole Settergren
are thanked for initial experimental efforts. We are also grateful to
the reviewers for their helpful suggestions.
27 An empirical correction for absorption anisotropy: R. Blessing, Acta
Crystallogr., Sect. A., 1995, A51, 33.
28 For L2Cu(CH3CN): SAINT v6.2, Bruker Analytical X-Ray Systems,
Madison, WI, 2001; For L1Cu(CH3CN), LCu(CO) and L2Cu(CO):
SAINT+ v6.45, Bruker Analytical X-Ray Systems, Madison, WI,
2003.
References
29 Jaguar 6.1. Schrodinger, LLC: Portland, Oregon, 2003.
30 B. G. Johnson, P. M. W. Gill and J. A. Pople, J. Chem. Phys., 1993, 98,
5612.
1 (a) M. A. Halcrow, in Comprehensive Coordination Chemistry II, ed.
J. A. McCleverty and T. J. Meyer, Elsevier: Amsterdam, 2004, vol. 8,
pp. 395; (b) S. Itoh, Curr. Opin. Chem. Biol., 2006, 10, 115.
2 I. Arends, P. Gamez and R. A. Sheldon, Adv. Inorg. Chem., 2006, 58,
235.
3 (a) L. M. Mirica, X. Ottenwaelder and T. D. P. Stack, Chem. Rev., 2004,
104, 1013; (b) E. A. Lewis and W. B. Tolman, Chem. Rev., 2004, 104,
1047.
4 S. T. Prigge, B. A. Eipper, R. E. Mains and L. M. Amzel, Science, 2004,
304, 864.
5 (a) K. Fujisawa, M. Tanaka, Y. Moro-oka and N. Kitajima, J. Am.
Chem. Soc., 1994, 116, 12079; (b) P. Chen, D. E. Root, C. Campochiaro,
K. Fujisawa and E. I. Solomon, J. Am. Chem. Soc., 2003, 125,
466.
31 A. D. Becke, J. Chem. Phys., 1993, 98, 1372.
32 C. T. Lee, W. T. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
33 J.-M. Ducere, A. Goursot and D. Berthomieu, J. Phys. Chem. A, 2005,
109, 400.
34 B. F. Gherman and C. J. Cramer, Inorg. Chem., 2004, 43, 7281.
35 N. W. Aboelella, B. F. Gherman, L. M. R. Hill, J. T. York, N. Holm,
V. G. Young, Jr., C. J. Cramer and W. B. Tolman, J. Am. Chem. Soc.,
2006, 128, 3345.
36 (a) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270; (b) W. R.
Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284; (c) P. J. Hay and
W. R . Wa d t , J. Chem. Phys., 1985, 82, 299.
37 R. A. Friesner, M.-H. Baik, V. Guallar, B. F. Gherman, M. Wirstam,
R. B. Murphy and S. J. Lippard, Coord. Chem. Rev., 2003, 238–239,
267.
6 (a) M. Schatz, V. Raab, S. P. Foxon, G. Brehm, S. Schneider, Markus
Reiher, M. C. Holthausen, J. Sundermeyer and S. Schindler, Angew.
Chem., Int. Ed., 2004, 43, 4360; (b) C. Wu¨rtele, E. Gaoutchenova, K.
Harms, M. C. Holthausen, J. Sundermeyer and S. Schindler, Angew.
Chem., Int. Ed., 2006, 45, 3867.
7 (a) N. W. Aboelella, E. A. Lewis, A. M. Reynolds, W. W. Brennessel,
C. J. Cramer and W. B. Tolman, J. Am. Chem. Soc., 2002, 124, 10660;
(b) N. W. Aboelella, S. V. Kryatov, B. F. Gherman, W. W. Brennessel,
V. G. Young, Jr., R. Sarangi, E. V. Rybak-Akimova, K. O. Hodgson, B.
Hedman, E. I. Solomon, C. J. Cramer and W. B. Tolman, J. Am. Chem.
Soc., 2004, 126, 16896.
38 M.-H. Baik, M. Newcomb, R. A. Friesner and S. J. Lippard, Chem.
Rev., 2003, 103, 2385.
39 C. W. Bauschlicher and H. Partridge, J. Chem. Phys., 1995, 103,
1788.
40 B. Marten, K. Kim, C. Cortis, R. A. Friesner, R. B. Murphy, M. N.
Ringnalda, D. Sitkoff and B. Honig, J. Phys. Chem., 1996, 100, 11775.
41 D. J. Tannor, B. Marten, R. B. Murphy, R. A. Friesner, D. Sitkoff, A.
Nicholls, M. N. Ringnalda, W. A. Goddard, III and B. Honig, J. Am.
Chem. Soc., 1994, 116, 11875.
42 C. Carvajal, K. J. Tolle, J. Smid and M. Szwarc, J. Am. Chem. Soc.,
1965, 87, 5548.
43 D. J. Metz and A. Glines, J. Phys. Chem., 1967, 71, 1158.
44 M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen,
A. D. Earhart, J. V. Coe and T. R. Tuttle, J. Phys. Chem. A, 1998, 102,
7787.
8 A. M. Reynolds, B. F. Gherman, C. J. Cramer and W. B. Tolman, Inorg.
Chem., 2005, 44, 6989.
9 C. J. Cramer, W. B. Tolman, K. H. Theopold and A. L. Rheingold,
Proc. Natl. Acad. Sci. USA, 2003, 100, 3635.
10 R. Sarangi, N. Aboelella, K. Fujisawa, W. B. Tolman, B. Hedman, K. O.
Hodgson and E. I. Solomon, J. Am. Chem. Soc., 2006, 128, 8286.
11 (a) A. M. Reynolds, E. L. Lewis, N. W. Aboelella and W. B. Tolman,
Chem. Commun., 2005, 2014; (b) B. F. Gherman, W. B. Tolman and
C. J. Cramer, J. Comput. Chem., 2006, in press.
12 (a) J. P. Evans, K. Ahn and J. P. Klinman, J. Biol. Chem., 2003, 278,
49691; (b) P. Chen and E. I. Solomon, J. Am. Chem. Soc., 2004, 126,
4991; (c) B. F. Gherman, D. E. Heppner, W. B. Tolman and C. J. Cramer,
J. Biol. Inorg. Chem., 2006, 11, 197; (d) T. Kamachi, N. Kihara, Y. Shiota
and K. Yoshizawa, Inorg. Chem., 2005, 44, 4226; (e) K. Yoshizawa,
N. Kihara, T. Kamachi and Y. Shiota, Inorg. Chem., 2006, 45,
3034.
45 C. P. Kelly, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2006,
110, 16066.
46 X. Ribas, D. A. Jackson, B. Donnadieu, J. Mahia, T. Parella, R. Xifra,
B. Hedman, K. O. Hodgson, A. Llobet and T. D. P. Stack, Angew.
Chem., Int. Ed., 2002, 41, 2991.
47 P. Winget, C. J. Cramer and D. G. Truhlar, Theor. Chem. Acc., 2004,
112, 217.
48 K. Pierloot, B. Dumez, P. O. Widmark and B. O. Roos, Theor. Chim.
Acta, 1995, 90, 87.
4952 | Dalton Trans., 2006, 4944–4953
This journal is
The Royal Society of Chemistry 2006
©