A R T I C L E S
Gansa¨uer et al.
ene cyclizations.3l,o,q Moreover, the titanocene-mediated epoxide
opening has been used with excellent success for the initiation
of the polymerization of styrene.5 Titanocene-mediated or
titanocene-catalyzed pinacol couplings have attracted less at-
tention due to their restricted substrate scope, even though the
first example of an enantioselective coupling has been reported.6
Scheme 1. Reactions Featuring Homolytic Substitution Reactions
with Metal Oxygen Bonds (porph ) Porphyrin)
An attractive feature of titanocene catalysis is that the
regioselectivity of ring cleavage is opposite to SN2 reactions,7
such as Jacobsen’s outstanding catalytic epoxide openings.7d-g
Therefore, the preparative usefulness of epoxides,8 in organic
synthesis is increased even further. Despite this conceptual and
preparative usefulness of the titanocene-mediated or titanocene-
catalyzed transformations, to the best of our knowledge nothing
is known about the exact mechanism of the titanocene-mediated
epoxide opening. Here, we present a full account of the first
study elucidating this mechanism by a combination of electro-
chemical, kinetic, computational, and synthetic methods.9 The
results are of fundamental interest due to the insights in the
molecular details of the reaction and lead the way for the
development of even more selective catalysts or processes.
Results and Discussion
We selected four alkyl-substituted titanocene dichlorides,
(RCp)2TiCl2, with the aim of identifying the principal species
formed in Zn-reduced solutions and their reactivity toward
epoxides. The substituent at the cyclopentadienyl ring ranges
from the relatively small Me over tert-butyl to the bulky
menthyl13 group along with an ethylene-bridged tetrahydroin-
denyl moiety (Chart 1).14 These substituents are interesting not
only with respect to their steric and electronic effects, in general,
but also because of their potential synthetic applications in
stereoselective epoxide openings.
Moreover, our investigation provides a unique link between
the mechanism of reductive opening of epoxides, where a C-O
bond is cleaved through a homolytic substitution reaction, and
reactions where C-O bonds are formed through homolytic
substitutions featuring metal oxygen bonds as radical traps.
Examples for the latter transformations are alkoxylation reac-
tions such as epoxidations via â-metaloxy radicals,10 hydroxy-
lations of hydrocarbons via C-H bond activation by organo-
metallic complexes,11 and our titanocene-catalyzed THF
synthesis.3k,m Even the oxygen rebound step, that is intensely
debated for the P450 enzymes, may be regarded as another case
of this type of reaction.12 These reactions are highlighted in
Scheme 1.
Chart 1. Structures of the Substituted Titanocenes Used in This
Study
(5) (a) Asandei, A. D.; Moran, I. W. J. Am. Chem. Soc. 2004, 126, 15932-
15933. (b) Asandei, A. D.; Moran, I. W. J. Polym. Sci., Part A: Polym.
Chem. 2006, 44, 6028-6038. (c) Asandei, A. D.; Moran, I. W. J. Polym.
Sci., Part A: Polym. Chem. 2005, 43, 6039-6047. (d) Asandei, A. D.;
Moran, I. W. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 1060-1070.
(6) (a) Handa, Y.; Inanaga, J. Tetrahedron Lett. 1987, 28, 5717-5718. (b)
Gansa¨uer, A. Chem. Commun. 1997, 457-458. (c) Gansa¨uer, A.; Bauer,
D. J. Org. Chem. 1998, 63, 2070-2071. (d) Gansa¨uer, A.; Bauer, D. Eur.
J. Org. Chem. 1998, 2673-2676. (e) Dunlap, M. S.; Nicholas, K. M. Synth.
Commun. 1999, 27, 1097-1106. (f) Halterman, R. L.; Zhu, C.; Chen, Z.;
Dunlap, M. S.; Khan, M. A.; Nicholas, K. M. Organometallics 2000, 19,
3824-3829.
(7) (a) Nugent, W. A. J. Am. Chem. Soc. 1992, 114, 2768-2769. (b) Martinez,
L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N. J. Am. Chem. Soc.
1995, 117, 5897-5898. (c) Jacobsen, E. N.; Kakiuchi, F.; Konsler, R. G.;
Larrow, J. F.; Tokugana, M. Tetrahedron Lett. 1997, 38, 773-776. (d)
Larrow, J. F.; Schaus, S. E.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118,
7420-7421. (e) Tokugana, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen,
E. N. Science 1997, 277, 936-938. (f) Jacobsen, E. N. Acc. Chem. Res.
2000, 33, 421-431. (g) Nielsen, L. P. C.; Jacobsen, E. N. In Epoxides and
Aziridines in Organic Synthesis; Yudin, A. K., Ed.; Wiley-VCH: Weinheim,
Germany, 2006; pp 229-269.
(8) (a) Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis;
Ojima, I., Ed.; Wiley-VCH: New York, 2000; pp 231-280. (b) Lane,
B. S.; Burgess, K. Chem. ReV. 2003, 103, 2457-2474. (c) Shi, Y. In Modern
Oxidation Methods; Ba¨ckvall, J.-E., Ed.; Wiley-VCH: Weinheim, Germany,
2004; pp 51-78. (d) Yang, D. Acc. Chem. Res. 2004, 37, 497-505. (e)
Shi, Y. Acc. Chem. Res. 2004, 37, 488-496. (f) McGarrigle, E. M.;
Gilheany, D. G. Chem. ReV. 2005, 105, 1564-1602.
(9) Daasbjerg, K.; Svith, H.; Grimme, S.; Gerenkamp, M.; Mu¨ck-Lichtenfeld,
C.; Gansa¨uer, A.; Barchuk, A.; Keller, F. Angew. Chem., Int. Ed. 2006,
45, 2041-2044.
For comparative purposes unsubstituted titanocene dichloride,
Cp2TiCl2, was included in the study. In previous work we have
succeeded in elucidating the composition of the electrochemi-
cally and metal-induced reductions of Cp2TiCl2 in THF by
means of cyclic voltammetric and kinetic measurements.15 We
were able to demonstrate that the principal constituents of such
solutions are monomeric and dimeric Ti(III) species. Trinuclear
(11) (a) Groves, J. T.; Viski, T. J. Org. Chem. 1990, 55, 3628-3634. (b) Larrow,
J. F.; Jacobsen, E. N. J. Am. Chem. Soc. 1994, 116, 12129-12130. (c)
Hamachi, K.; Irie, R.; Katsuki, T. Tetrahedron Lett. 1996, 37, 4979-4982.
(d) Hamada, T.; Irie, R.; Mihara, J.; Hamachi, K.; Katsuki, T. Tetrahedron
1998, 54, 10017-10028. (e) Katsuki, T. In ComprehensiVe Asymmetric
Catalysis II; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer:
Berlin, 1999; pp 791-799. (f) Katsuki, T. Synlett 2003, 281-297.
(12) For some recent reviews see: (a) Newcomb, M.; Toy, P. H. Acc. Chem.
Res. 2000, 33, 449-455. (b) Shaik, S.; Cohen, S.; de Visser, S. P.; Sharma,
P. K.; Kumar, D.; Kozuch, S.; Ogliaro, F.; Danovich, D. Eur. J. Inorg.
Chem. 2004, 207-226. (c) Meunier, B.; de Visser, S. P.; Shaik, S. Chem.
ReV. 2004, 104, 3947-3980. (d) Shaik, S.; Kumar, D.; de Visser, S. P.;
Thiel, W. Chem. ReV. 2005, 105, 2279-2328. (e) Denisov, I. G.; Makris,
T. M.; Sligar, S. G.; Schlichting, I. Chem. ReV. 2005, 105, 2253-2277.
(13) (a) Cesarotti, E.; Kagan, H. B.; Goddard, R.; Kru¨ger, C. J. Organomet.
Chem. 1978, 162, 297-309. Practical synthesis: (b) Gansa¨uer, A.; Narayan,
S.; Schiffer-Ndene, N.; Bluhm, H.; Oltra, J. E.; Cuerva, J. M.; Rosales, A;
Nieger, M. J. Organomet. Chem. 2006, 691, 2327-2331.
(10) (a) Samsel, E. G.; Srinivasan, K.; Kochi, J. K. J. Am. Chem. Soc. 1985,
107, 7606-7617. (b) Srinivasan, K.; Michaud, P.; Kochi, J. K. J. Am. Chem.
Soc. 1986, 108, 2309-2320. (c) Zhang, W.; Loebach, J. L.; Wilson, S. R.;
Jacobsen, E. N. J. Am. Chem. Soc. 1990, 112, 2801-2803. (d) Irie, R.;
Noda, K.; Ito, Y.; Katsuki, T. Tetrahedron Lett. 1990, 31, 7345-7348. (e)
Daly, A. M.; Renehan, M. F.; Gilheany, D. G. Org. Lett. 2001, 3, 663-
666.
(14) (a) Wild, F. R. W. P.; Zsolnai, L.; Huttner, G.; Brintzinger, H. H.
J. Organomet. Chem. 1982, 232, 233-247. (b) Collins, S.; Kuntz, B. A.;
Taylor, N. J.; Ward, D. G. J. Organomet. Chem. 1988, 342, 21-29.
9
1360 J. AM. CHEM. SOC. VOL. 129, NO. 5, 2007