stereochemical control in tandem RCM of dienynes,10 we
envisioned that a silaketal such as 4 would undergo group-
selective RCM to furnish bicyclic siloxane 5, which upon
simple protodesilylation can furnish 6 (Scheme 1). Gratify-
Because the two-step transformation shown in Scheme 1
could be broadly applicable to the synthesis of related
structural motifs, we developed a strategy to synthesize the
C1-C21 linear chain of tartrolon B. The preparation of
ketone 13 began with asymmetric crotylation12 of aldehyde
7 to yield the syn-crotyl adduct, directly followed by PMB-
ether formation to afford 8 (41% over two steps, Scheme
2). This intermediate was then subjected to hydroboration
Scheme 1
Scheme 2
ingly, the treatment of 4 with a catalytic amount of catalyst
3,11 followed by desilylation, provided a single isomeric
dienediol product 6, a structural equivalent to the C11-C20
fragment of tartrolon B, in good yield. Herein, we report a
unique approach for the synthesis of the entire carbon
framework of tartrolon B based on the enyne RCM strategy.
(3) (a) Hu¨ter, R.; Keller-Schierlein, W.; Knu¨sel, F.; Prelog, V.; Rodgers,
G. C.; Suter, P.; Vogel, G.; Za¨hner, H. J. Antibiot. 1967, 20, 1533. (b)
Dunitz, J. D.; Hawley, D. M.; Miklos, D.; White, D. N. J.; Berlin, Y.;
Marusic, R.; Prelog, V. HelV. Chim. Acta 1971, 54, 1709. For total synthesis,
see: (c) White, J. D.; Avery, M. A.; Choudhry, S. C.; Dhingra, O. P.; Gray,
B. D.; Kang, M. C.; Kuo, S. C.; Whittle, A. J. J. Am. Chem. Soc. 1989,
111, 790.
(4) (a) Okami, Y.; Okazaki, T.; Kitahara, T.; Umezawa, H. J. Antibiot.
1976, 29, 1019. For total synthesis, see: (b) Corey, E. J.; Pan, b. C.; Hua,
D. H.; Deardorff, D. R. J. Am. Chem. Soc. 1982, 104, 6816. (c) Corey, E.
J.; Hua, D. H.; Pan, B. C.; Seitz, S. P. J. Am. Chem. Soc. 1982, 104, 6818.
(d) White, J. D.; Vedananda, T. R.; Kang, M. C.; Choudhry, S. C. J. Am.
Chem. Soc. 1986, 108, 8105.
(5) Hemscheidt, T.; Puglisi, M. P.; Larsen, L. K.; Patterson, g. M. L.;
Moore, R. E.; Rios, J. L.; Clardy, J. J. Org. Chem. 1994, 59, 3467.
(6) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975,
50, 4467. (b) Negishi, E.; Luigi, A. Chem. ReV. 2003, 103, 1979.
(7) (a) Lindlar, H. HelV. Chim. Acta 1952, G35, 446. (b) Boland, W.;
Schoroer, N.; Sieler, C. HelV. Chim. Acta 1987, 70, 1025. (c) Pattenden;
Robson, D. C. Tetrahedron 2006, 62, 7477. (d) Fu¨rstner, A.; Dierkes, T.;
Thiel, O. R.; Blanda, G. Chem.-Eur. J. 2001, 7, 5286. (e) Sharma, G. V.
M.; Choudary, B. M.; Sarma, M. R.; Rao, K. K. J. Org. Chem. 1989, 54,
2997.
followed by Swern oxidation to give aldehyde 9 in excellent
yields. Homologation of the aldehyde under typical condi-
tions gave rise to the methyl enol ether 10 as a mixture of
E/Z-isomers (1.5:1 E/Z, 80%). After trying several different
conditions to convert 10 to the corresponding aldehyde, we
chose a two-step protocol using NBS followed by Zn/AcOH,
which turned out to be the best conditions to give the desired
aldehyde (87%). This aldehyde was then subjected to another
asymmetric crotylation12 to generate anti-crotyl adduct 11
in 57% yield. The resulting alcohol was then protected as
its MOM-ether (75%) and subjected to Wacker oxidation13
to give the desired methyl ketone 13 in 71% yield.
The synthesis of 13 set the aldol addition to 4-pentenal to
establish the C11 stereocenter and the terminal alkene moiety
for the projected tandem dienyne RCM. On the basis of
known examples of substrate-controlled aldol reaction using
R-methyl- or â-alkoxy-substituted methyl ketones,14 we
(8) (a) Mulzer, J.; Berger, M. J. Org. Chem. 2004, 69, 891. (b) Berger,
M.; Mulzer, J. J. Am. Chem. Soc. 1999, 121, 8393. (c) Mulzer, J.; Berger,
M. Tetrahedron Lett. 1998, 39, 803.
(9) For a review on enyne metathesis, see: (a) Giessert, A. J.; Diver, S.
T. Chem. ReV. 2004, 104, 1317. (b) Poulsen, C. S.; Madsen, R. Synthesis
2003, 1. (c) Mori, M. Top. Organomet. Chem. 1998, 1, 133. (d) Mori, M.
In Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim,
Germany, 2003; Vol. 2, pp 176-204.
(10) For tandem RCM of dienynes, see: (a) Grimm, J. B.; Otte, R. D.;
Lee, D. J. Organomet. Chem. 2005, 690, 5508. (b) Boyer, F.-D.; Hanna,
I.; Ricard, L. Org. Lett. 2004, 6, 1817. (c) Hoye, T. R.; Jeffrey, C. S.;
Tennakoon, M. A.; Wang, J.; Zhao, H. J. Am. Chem. Soc. 2004, 126, 10210.
(d) Huang, J.; Xiong, H.; Hsung, R. P.; Rameshkumar, C.; Mulder, J. A.;
Grebe, T. P. Org. Lett. 2002, 4, 2417. (e) Boyer, F.-D.; Hanna, I.; Ricard,
L. Org. Lett. 2001, 3, 3095. (f) Timmer, M. S. M.; Ovaa, H.; Filippov, D.
V.; van der Marel, G. A.; van Boom, J. H. Tetrahedron Lett. 2001, 42,
8231. (g) Choi, T. L.; Grubbs, R. H. Chem. Commun. 2001, 2648. (h)
Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem.
Soc. 2000, 122, 3783. (i) Kim, S. H.; Zuercher, W. J.; Bowden, N. B.;
Grubbs, R. H. J. Org. Chem. 1996, 61, 1073. (j) Kim, S. H.; Bowden, N.;
Grubbs, R. H. J. Am. Chem. Soc. 1994, 116, 10801.
(12) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919.
(13) Tsuji, J. Synthesis 1984, 5, 369.
(14) (a) Evans, D. A.; Cee, V. J.; Siska, S. J. J. Am. Chem. Soc. 2006,
128, 9433. (b) Evans, D. A.; Coˆte´, B.; Coleman, P. J.; Connell, B. T. J.
Am. Chem. Soc. 2003, 125, 10893. (c) Paterson, I.; Di Francesco, M. E.;
Kuehn, T. Org. Lett. 2003, 5, 599. (d) Evans, D. A.; Coleman, P. J.; Coˆte´,
B. J. Org. Chem. 1997, 62, 788. (e) Paterson, I.; Gibson, IK. R.; Oballa, R.
M. Tetrahedron Lett. 1996, 37, 8585. (f) Paterson, I.; Yeung, K. S.; Ward,
R. A.; Smith, J. D.; Cumming, J. G.; Lamboley, S. Tetrahedron 1995, 51,
9467. (g) Evans, D. A.; Calter, M. A. Tetrahedron Lett. 1993, 34, 6871.
(h) Duplantier, A. J.; Hantz, M. H.; Roberts, J. C.; Short, R. P.; Somfai, P.;
Masamune, S. Tetrahedron Lett. 1989, 30, 7357. (i) Blanchette, M. A.;
Malamas, M. S.; Nantz, M. H.; Roberts, J. C.; Somfai, P.; Whritenour, D.
C.; Masamune, S.; Kageyama, M.; Tamura, T. J. Org. Chem. 1989, 54,
2817.
(11) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1,
953.
5220
Org. Lett., Vol. 8, No. 23, 2006