RSC Advances
Paper
course of schizophrenia?, J. Psychiatr. Res., 1998, 32, 229– 20 M. Kondej, P. St˛epnicki and A. A. Kaczor, Multi-target
242.
approach for drug discovery against schizophrenia, Int. J.
Mol. Sci., 2018, 19, 3105.
21 Y. Chen, S. Wang, X. Xu, X. Liu, M. Yu, S. Zhao, S. Liu, Y. Qiu,
T. Zhang, B. F. Liu and G. Zhang, Synthesis and biological
investigation of coumarin piperazine (piperidine)
3 G. W. Arana, An overview of side effects caused by typical
antipsychotics, J. Clin. Psychiatry, 2000, 61(suppl. 8), 5–11.
4 A. Serretti, D. De Ronchi, C. Lorenzi and D. Berardi, New
antipsychotics and schizophrenia: a review on efficacy and
side effects, Curr. Med. Chem., 2004, 11, 343–358.
5 S. O. Ogren, The role of 5-HT1A receptors in learning and
memory, Behav. Brain Res., 2008, 195, 54–77.
6 M. J. Millan, Improving the treatment of schizophrenia:
focus on serotonin (5HT)(1A) receptors, J. Pharmacol. Exp.
Ther., 2001, 295, 853–861.
derivatives
as
potential
multireceptor
atypical
antipsychotics, J. Med. Chem., 2013, 56, 4671–4690.
22 Y. Chen, Y. Lan, S. Wang, H. Zhang, X. Xu, X. Liu, M. Yu,
B. F. Liu and G. Zhang, Synthesis and evaluation of new
coumarin derivatives as potential atypical antipsychotics,
Eur. J. Med. Chem., 2014, 74, 427–439.
7 C. J. Schmidt, S. M. Sorensen, J. H. Kehne, A. A. Carr and 23 J. Jin, K. Zhang, F. Dou, C. Hao, Y. Zhang, X. Cao, L. Gao,
M. G. Palfreyman, The role of 5-HT2A receptors in
antipsychotic activity, Life Sci., 1995, 56, 2209–2222.
8 G. Zhang and R. W. Stackman, The role of serotonin 5-HT2A
receptors in memory and cognition, Front. Pharmacol., 2015,
6, 225.
J. Xiong, X. Liu, B. F. Liu, G. Zhang and Y. Chen,
Isoquinolinone derivatives as potent CNS multi-receptor
D2/5-HT1A/5-HT2A/5-HT6/5-HT7 agents: synthesis and
pharmacological evaluation, Eur. J. Med. Chem., 2020,
112709.
9 H. Y. Meltzer and B. W. Massey, The role of serotonin 24 X. Cao, Y. Zhang, Y. Chen, Y. Qiu, M. Yu, X. Xu, X. Liu,
receptors in the action of atypical antipsychotic drugs,
Curr. Opin. Pharmacol., 2011, 11, 59–67.
B. F. Liu and G. Zhang, Synthesis and biological evaluation
of fused tricyclic heterocycle piperazine (piperidine)
10 S. Miyamoto, G. E. Duncan, C. E. Marx and J. A. Lieberman,
derivatives
antipsychotics, J. Med. Chem., 2018, 61, 10017–10039.
pharmacology and mechanisms of action of antipsychotic 25 J. C. Schwartz, The histamine H3 receptor: from discovery to
as
potential
multireceptor
atypical
Treatments for schizophrenia:
a
critical review of
drugs, Mol. Psychiatry, 2005, 10, 79–104.
11 M. C. Mauri, S. Paletta, M. Maffini, A. Colasanti,
clinical trials with pitolisant, Br. J. Pharmacol., 2011, 163,
713–721.
F. Dragogna, C. D. Pace and A. Altamura, Clinical 26 N. Upton, T. T. Chuang, A. J. Hunter and D. J. Virley, 5-HT6
pharmacology of atypical antipsychotics: an update, Clin.
Pharmacokinet., 2014, 13, 1163–1191.
receptor antagonists as novel cognitive enhancing agents
for Alzheimer's disease, Neurotherapeutics, 2008, 5, 458–469.
12 A. B. Casey and C. E. Canal, Classics in chemical 27 M. A. Letavic, L. Aluisio, R. Apodaca, M. Bajpai, A. J. Barbier,
neuroscience: aripiprazole, ACS Chem. Neurosci., 2017, 8,
1135–1146.
13 J. E. Frampton, Brexpiprazole: a review in schizophrenia,
Drugs, 2019, 79, 189–200.
14 S. Caccia, R. W. Invernizzi, A. Nobili and L. Pasina, A new
generation of antipsychotics: pharmacology and clinical
utility of cariprazine in schizophrenia, Ther. Clin. Risk
Manage., 2013, 9, 319–328.
15 A. Yee, Brexpiprazole for the treatment of schizophrenia,
Expert Rev. Neurother., 2016, 16, 109–122.
A. Bonneville, P. Bonaventure, N. I. Carruthers, C. Dugovic,
I. C. Fraser, M. L. Kramer, B. Lord, T. W. Lovenberg,
L. Y. Li, K. S. Ly, H. Mcallister, N. S. Mani, K. L. Morton,
A. Ndifor, S. D. Nepomuceno, C. R. Pandit, S. B. Sands,
C. R. Shah, J. E. Shelton, S. S. Snook, D. M. Swanson and
W. Xiao, Novel benzamide-based histamine H3 receptor
antagonists: the identication of two candidates for
clinical development, ACS Med. Chem. Lett., 2015, 6, 450–
454.
28 M. D. Wood, C. Heidbreder, C. Reavill, C. R. Ashby Jr and
D. N. Middlemiss, 5-HT2C receptor antagonists: potential
in schizophrenia, Drug Dev. Res., 2001, 54, 88–94.
16 D. Mamo, A. Graff, R. Mizrahi, C. M. Shammi and S. Kapur,
Differential effects of aripiprazole on D2, 5-HT2, and 5-
HT1Areceptor occupancy in patients with schizophrenia: 29 M. He, C. Deng and X. F. Huang, The role of hypothalamic
a triple tracer PET study, Am. J. Psychiatry, 2007, 164, 1411–
H1 receptor antagonism in antipsychotic-induced weight
1417.
gain, CNS Drugs, 2013, 27(6), 423–434.
17 S. Natesan, G. E. Reckless, J. N. Nobrega, P. J. Fletcher and 30 P. A. Gwirtz and H. L. Stone, Coronary blood ow and
S. Kapur, Dissociation between in vivo occupancy and
functional antagonism of dopamine D2 receptors:
comparing aripiprazole to other antipsychotics in animal
models, Neuropsychopharmacol, 2006, 31(9), 1854–1863.
18 R. Mailman and V. Murthy, Third generation antipsychotic
drugs: partial agonism or receptor functional selectivity?,
Curr. Pharm. Des., 2010, 16, 488–501.
19 R. H. Campbell, M. Diduch, K. N. Gardner and C. Thomas,
Review of cariprazine in management of psychiatric
illness, Ment. Health Clin., 2018, 7, 221–229.
myocardial oxygen consumption aer alpha adrenergic
blockade during submaximal exercise, J. Pharmacol. Exp.
Ther., 1981, 217, 92–98.
31 S. C. Chang and M. L. Lu, Metabolic and Cardiovascular
Adverse Effects Associated with Treatment with
Antipsychotic Drugs, J. Exp. Clin. Med., 2012, 4, 103–107.
32 H. A. Nasrallah, Atypical antipsychotic-induced metabolic
side effects: insights from receptor-binding proles, Mol.
Psychiatry, 2008, 13, 27–35.
33 J. Leung, A. M. Barr, R. M. Procyshyn, W. G. Honer and
C. Pang, Cardiovascular side-effects of antipsychotic drugs:
16940 | RSC Adv., 2021, 11, 16931–16941
© 2021 The Author(s). Published by the Royal Society of Chemistry