8740
T. Nemoto et al. / Tetrahedron Letters 47 (2006) 8737–8740
281–283; (g) Takahashi, K.; Nakano, H.; Fujita, R.
Tetrahedron Lett. 2005, 46, 8927–8930.
oxide ligands, see: (d) Dubrovina, N. V.; Bo¨rner, A.
Angew. Chem., Int. Ed. 2004, 43, 5883–5886.
4. (a) Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002,
124, 15164–15165; (b) Kiener, C. A.; Shu, C.; Incarvito,
C.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 14272–
14273; (c) Shu, C.; Leiner, A.; Hartwig, J. F. Angew.
Chem., Int. Ed. 2004, 43, 4797–4800; (d) Tissot-Croset, K.;
Polet, D.; Alexakis, A. Angew. Chem., Int. Ed. 2004, 43,
2426–2428; (e) Lipowsky, G.; Helmchen, G. Chem. Com-
mun. 2004, 896–897; (f) Miyabe, H.; Matsumura, A.;
Moriyama, K.; Takemoto, Y. Org. Lett. 2004, 6, 4631–
4634; (g) Weihohen, R.; Dahnz, A.; Tverskoy, O.; Helm-
chen, G. Chem. Commun. 2005, 3541–3543; (h) Polet, D.;
Alexakis, A. Org. Lett. 2005, 7, 1621–1624; (i) Leitner, A.;
Shekhar, S.; Pouy, M. J.; Hartwig, J. F. J. Am. Chem. Soc.
2005, 127, 15506–15514; (j) Weihohen, R.; Tverskoy, O.;
Helmchen, G. Angew. Chem., Int. Ed. 2006, 45, 5546–
5549.
5. Ru catalyst: (a) Matsushima, Y.; Onitsuka, K.; Kondo, T.;
Mitsudo, T.; Takahashi, S. J. Am. Chem. Soc. 2001, 123,
10405–10406; Ni catalyst: (b) Bekowitz, D. B.; Maiti, G.
Org. Lett. 2004, 6, 2661–2664; Enantiospecific allylic
amination using Rh catalyst: (c) Evans, P. A.; Robinson,
J. E.; Nelson, J. D. J. Am. Chem. Soc. 1999, 121, 6761–
6762.
10. For the pioneering work on Ir-catalyzed allylic substitu-
tions, see: (a) Takeuchi, R.; Kashio, M. Angew. Chem.,
Int. Ed. 1997, 36, 263–265; (b) Takeuchi, R.; Kashio, M. J.
Am. Chem. Soc. 1998, 120, 8647–8655; (c) Takeuchi, R.;
Ue, N.; Tanabe, K.; Yamashita, K.; Shiga, N. J. Am.
Chem. Soc. 2001, 123, 9525–9534; (d) Takeuchi, R. Synlett
2002, 12, 1954–1965.
11. For other recent representative examples of Ir-catalyzed
asymmetric allylic substitution reactions: (a) Lopez, F.;
Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125,
3426–3427; (b) Kanayama, T.; Yoshida, K.; Miyabe, H.;
Takemoto, Y. Angew. Chem., Int. Ed. 2003, 42, 2054–
2056; (c) Lipowsky, G.; Miller, N.; Helmchen, G. Angew.
Chem., Int. Ed. 2004, 43, 4595–4597; (d) Kinoshita, N.;
Marx, K. H.; Tanaka, K.; Tsubaki, K.; Kawabata, T.;
Yoshikai, N.; Nakamura, E.; Fuji, K. J. Org. Chem. 2004,
69, 7960–7964; (e) Graening, T.; Hartwig, J. F. J. Am.
Chem. Soc. 2005, 127, 17192–17193; (f) Polet, D.; Alexa-
kis, A.; Tissot-Croset, K.; Corminboeuf, C.; Ditrich, K.
Chem. Eur. J. 2006, 12, 3596–3609; (g) Lyothier, I.;
Defieber, C.; Carreira, E. M. Angew. Chem., Int. Ed. 2006,
45, 6204–6207.
12. Although the role of hexafluorophosphate anion is
unknown, we speculate that, at the present stage, a
cationic iridium complex might be formed by the anion
exchange between hexafluorophosphate ion and a coordi-
nated species around the Ir metal, resulting in the
increased reactivity. Investigation of the mechanism is
ongoing.
6. (a) Nemoto, T.; Matsumoto, T.; Masuda, T.; Hitomi, T.;
Hatano, K.; Hamada, Y. J. Am. Chem. Soc. 2004, 126,
3690–3691; (b) Nemoto, T.; Masuda, T.; Matsumoto, T.;
Hamada, Y. J. Org. Chem. 2005, 70, 7172–7178; (c)
Nemoto, T.; Fukuda, T.; Matsumoto, T.; Hitomi, T.;
Hamada, Y. Adv. Synth. Catal. 2005, 347, 1504–1506; (d)
Nemoto, T.; Jin, L.; Nakamura, H.; Hamada, Y. Tetra-
hedron Lett. 2006, 47, 6577–6581.
13. General procedure for the Ir-catalyzed asymmetric allylic
amination (Table 3, entry 1): To a stirred mixture of
[Ir(cod)Cl]2 (1.43 mg, 0.00213 mmol), (S,RP)-1h (2.15 mg,
0.00426 mmol), NaPF6 (1.79 mg, 0.0107 mmol), and 3a
(41.0 mg, 0.213 mmol) in CH2Cl2 at room temperature
was added BSA (152 lL, 0.639 mmol), and the solution
was stirred for 5 min at the same temperature. After the
reaction mixture was cooled down to ꢀ20 °C, benzylamine
(70 lL, 0.639 mmol) was added and the resulting mixture
was stirred for 48 h. The reaction mixture was concen-
trated under reduced pressure, and the obtained residue
was purified by flash column chromatography (SiO2,
hexane/ethyl acetate: 20/1) to give (S)-4a as yellow oil
(46.6 mg, 96%, 92% ee). The enantiomeric excess was
determined by HPLC analysis (DAICEL CHIRALCEL
OD-H, 2-propanol/hexane/diethylamine 0.25/99.74/0.01,
flow rate 0.5 mL/min, tR 15.1 min [(R)-isomer] and
17.4 min [(S)-isomer], detection at 254 nm).
7. Nemoto, T.; Masuda, T.; Akimoto, Y.; Fukuyama, T.;
Hamada, Y. Org. Lett. 2005, 7, 4447–4450.
8. For other examples of transition-metal catalysis using
diaminophosphine oxides, see: (a) Ackermann, L.; Born,
R. Angew. Chem., Int. Ed. 2005, 44, 2444–2447; (b)
Ackermann, L.; Born, R.; Spatz, J. H.; Meyer, D. Angew.
Chem., Int. Ed. 2005, 44, 7216–7219; (c) Ackermann, L.;
Althammer, A.; Born, R. Angew. Chem., Int. Ed. 2006, 45,
2619–2622.
9. For other examples of transition metal-catalyzed asym-
metric reactions using chiral phosphine oxides, see: (a)
Jiang, X.-B.; Minnaard, A. J.; Hessen, B.; Feringa, B. L.;
Duchateau, A. L. L.; Andrien, J. G. O.; Boogers, J. A. F.;
de Vries, J. G. Org. Lett. 2003, 5, 1503–1506; (b) Dai,
W.-M.; Yeung, K. K. Y.; Leung, W. H.; Haynes, R. K.
Tetrahedron: Asymmetry 2003, 14, 2821–2826; (c) Bigea-
ult, J.; Giordano, L.; Buono, G. Angew. Chem., Int. Ed.
2005, 44, 4753–4757; For a review on chiral phosphine
14. There was no improvement in the enantioselectivity when
the reaction was performed at a lower temperature.