S. Trudeau, J. P. Morken / Tetrahedron 62 (2006) 11470–11476
11475
7. Shawali, A. S.; Elanadouli, B. E.; Albar, H. A. Tetrahedron
1985, 41, 1877.
8. Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem.
Rev. 1994, 94, 2483.
6.76 mmol) and titanium(IV) isopropoxide (0.20 mL,
0.69 mmol). The solution was stirred under reflux for 4 h.
More triethoxysilane (0.23 mL, 1.25 mmol) and titanium(IV)
isopropoxide (0.20 mL, 0.31 mmol) were added and the
black solution was stirred under reflux for 1 h. After cooling
to room temperature, the solvent was removed under reduced
pressure. The crude product was purified by flash chromato-
graphy (8/2 to 1/1 hexane/EtOAc) to give P,N-ligand 1
(0.26 g, 49%) as a white foam. The product was recrystal-
lized in hexane/Et2O to give white cubic crystals (0.18 g,
32%). [a]2D5 ꢁ39.0 (c 0.65, CHCl3). IR (thin film, n cmꢁ1):
ꢀ
ꢀ
ˇ
9. Vyskocil, S.; Smrcina, M.; Hanus, V.; Polasek, M.; Kocovsky,
´ˇ
ꢀ
P. J. Org. Chem. 1998, 63, 7738.
10. (a) Berk, S. C.; Buchwald, S. L. J. Org. Chem. 1992, 57, 3751;
(b) Coumbe, T.; Lawrence, N. J.; Muhammad, F. Tetrahedron
Lett. 1994, 35, 625.
11. For reviews, see: (a) Trost, B. M.; Crawley, M. L. Chem. Rev.
2003, 103, 2921; (b) Pfaltz, A.; Lautens, M. Comprehensive
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 2, Chapter
24; (c) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996,
96, 395.
12. For recent examples of Pd-catalyzed allylic substitution, see:
(a) Lussem, B. J.; Gais, H.-J. J. Am. Chem. Soc. 2003, 125,
6066; (b) Hou, X.-L.; Sun, N. Org. Lett. 2004, 6, 4399; (c)
Lyle, M. P. A.; Narine, A. A.; Wilson, P. D. J. Org. Chem.
2004, 69, 5060; (d) Mancheno, O. G.; Priego, J.; Cabrera, S.;
Arrayas, R. G.; Llamas, T.; Carretero, J. C. J. Org. Chem.
2003, 68, 3679; (e) Zhao, D.; Ding, K. Org. Lett. 2003, 5,
1
3056, 2987, 1669, 1436, 1245, 1216, 1077. H NMR: d
7.68 (1H, dd, J¼6.9, 3.1 Hz), 7.41 (1H, td, J¼7.9, 1.2 Hz),
7.31–7.28 (6H, m), 7.26–7.15 (5H, m), 6.94 (1H, ddd,
J¼7.7, 4.1, 1.3 Hz), 6.15 (1H, t, J¼7.9 Hz), 4.52 (1H, d,
J¼8.3 Hz), 4.07–4.00 (1H, m), 3.94–3.87 (1H, m), 3.64–
3.55 (1H, m), 3.39–3.31 (1H, m), 1.59 (3H, s), 1.53 (3H, s).
13C NMR: d 164.0, 141.7 (d, JPC¼24.0 Hz), 137.2 (d, JPC
¼
11.3 Hz), 136.9 (d, JPC¼11.8 Hz), 136.0 (d, JPC¼17.1 Hz),
134.7 (d, JPC¼1.1 Hz), 133.6 (d, JPC¼17.6 Hz), 133.4 (d,
JPC¼16.7 Hz), 129.9, 128.8, 128.7, 128.5 (d, JPC¼7.1 Hz),
128.4, 128.3, 127.1 (d, JPC¼6.0 Hz), 111.0, 77.9 (d,
JPC¼148.1 Hz), 77.9 (d, JPC¼29.6 Hz), 67.9, 54.3, 27.1,
26.2. 31P NMR: d ꢁ17.7. MS (ESI) (M+H)+: 432.1. HRMS
(ESI) (M+H)+ calcd for C26H27NO3P: 432.1723. Found:
432.1726.
`
1349; (f) Pamies, O.; Montserrat, D.; Claver, C. J. Am.
Chem. Soc. 2005, 127, 3646.
13. Crystallographic data has been deposited in the Cambridge
Crystallographic Data Centre under deposition number
CCDC 292585.
14. As opposed to agostic interactions, which exhibit upfield shifts
in the 1H NMR (Brookhart, M.; Green, M. L. H. Prog. Inorg.
Chem. 1988, 36, 1), preagostic interactions can be character-
ized by a downfield shift. See: (a) Roe, D. M.; Bailey, P. M.;
Moseley, K.; Maitlis, P. M. J. Chem. Soc., Chem. Commun.
1972, 1273; (b) Albinati, A.; Anklin, C. G.; Ganazzoli, F.;
Ruegg, H.; Pregosin, P. S. Inorg. Chem. 1987, 26, 503; (c)
Albinati, A.; Arz, C.; Pregosin, P. S. Inorg. Chem. 1987, 26,
508; (d) Ablinati, A.; Pregosin, P. S.; Wombacher, F. Inorg.
Chem. 1990, 29, 1812; (e) Yao, W.; Eisenstein, O.; Crabtree,
R. H. Inorg. Chim. Acta 1997, 254, 105; For an excellent dis-
cussion of agostic, preagostic, and M–H hydrogen bonding,
see: Lewis, J. C.; Wu, J.; Bergman, R. G.; Ellman, J. A.
Organometallics 2005, 24, 5737.
Acknowledgements
This work was supported by the NIH (GM 64451). J.P.M. is
a fellow of the Alfred P. Sloan foundation. The authors thank
Dr. Peter White of the UNC X-ray analysis facility for assis-
tance with crystallography.
Supplementary data
The supplementary data associated with this article can
15. (a) Sprinz, J.; Kiefer, M.; Helmchen, G.; Huttner, G.; Walter,
O.; Zsolnai, L. Tetrahedron Lett. 1994, 35, 1523; (b)
Steinhagen, H.; Reggelin, M.; Helmchen, G. Angew. Chem.,
Int. Ed. 1997, 36, 2108; (c) Kollmar, M.; Goldfuss, B.;
Reggelin, M.; Rominger, F.; Helmchen, G. Chem.—Eur. J.
2001, 7, 4913; (d) Kollmar, M.; Steinhagen, H.; Janssen,
References and notes
1. For a review of catalytic asymmetric reactions using PHOX
ligands, see: Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000,
33, 336.
´
J. P.; Goldfuss, B.; Malinovskaya, S. A.; Vazquez, J.;
Rominger, F.; Helmchen, G. Chem.—Eur. J. 2002, 8, 3103.
16. Brown, J. M.; Hulmes, D. I.; Guiry, P. J. Tetrahedron 1994, 50,
4493.
17. Electronic differentiation of the allyl carbons was originally
observed by Faller in the context of Mo complexes: Faller,
J. K.; Chao, K. H.; Murray, H. H. Organometallics 1984, 3,
1231; For related studies with P,N ligands, see: Togni, A.;
Burckhardt, U.; Gramlich, V.; Pregosin, P. S.; Salzmann, R.
2. von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993, 32,
566.
3. Sprinz, J.; Helmchen, G. Tetrahedron Lett. 1993, 34, 1769.
4. Dawson, G. J.; Frost, C. G.; Williams, J. M. J.; Coote, S. J.
Tetrahedron Lett. 1993, 34, 3149.
5. Constantine, R. N.; Kim, N.; Bunt, R. C. Org. Lett. 2003, 5,
2279.
6. (a) Bolm, C.; Wenz, K.; Raabe, G. J. Organomet. Chem. 2002,
J. Am. Chem. Soc. 1996, 118, 1031; Blochl, P. E.; Togni, A.
662, 23; (b) Wiese, B.; Knuhl, G.; Flubacher, D.; Prieß, J. W.;
¨
¨
¨
Ulriksen, B.; Brodner, K.; Helmchen, G. Eur. J. Org. Chem.
Organometallics 1996, 15, 4125; For the effect of electroni-
cally unsymmetric diphosphines on the structure of allyl
complexes, see: Breutel, C.; Pregosin, P. S.; Salzmann, R.;
Togni, A. J. Am. Chem. Soc. 1994, 116, 4067.
2005, 3246; (c) Ogasawara, M.; Yoshida, K.; Kamei, H.;
Kato, K.; Uozumi, Y.; Hayashi, T. Tetrahedron: Asymmetry
1998, 9, 1779; (d) Gilbertson, S. R.; Chang, C.-W. T. Chem.
Commun. 1997, 975; (e) Geiser, F. M.; Helmchen, G. J. Org.
Chem. 2006, 71, 2486.
18. For a general discussion, see: (a) Helmchen, G.; Kudis, S.;
Sennhenn, P.; Steinhagen, H. Pure Appl. Chem. 1997, 69,