Organic Letters
Letter
using EDC coupling to introduce a pyrrolidine amide 20 in 96%
yield. Pyrimidine 21 could be installed in high efficiency through
an SNAr reaction, both occurring selectively in the presence of
the unprotected phenol. The phenol itself provides a valuable
synthetic handle for functionalization. A second azetidine could
be readily installed by alkylation giving 22 in 63% yield. Phenol
2a was also converted to triflate 23 and used in a Suzuki−
Miyaura cross-coupling to afford 24, which is related to a
compound reported by AstraZeneca in a patent application
(Figure 1c).11a Finally, the phenol functionality was removed
from a mixture of azetidine 2b and 2b′ (80/20 ratio), and a
single phenyl-azetidine product 25 was obtained in 83% overall
yield by triflation followed by palladium catalyzed deoxygena-
tion.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Author Contributions
∥C.D. and M.A.J.D. contributed equally.
Notes
The authors declare no competing financial interest.
To probe the role of the Cbz group in enabling reactivity, we
applied the final conditions to azetidine derivatives with
different N-groups (Figure 2). Alternative carbamates with
ACKNOWLEDGMENTS
■
We gratefully acknowledge The Royal Society [University
Research Fellowship, UF140161 (to J.A.B.), URF Appointed
Grant RG150444 and URF Enhancement Grant RGF\EA
\180031], EPSRC [CAF to J.A.B. (EP/J001538/1)], Pfizer and
Imperial College London for studentship funding (M.D), and
European Union in the framework of the ERDF-ESF operational
programme 2014−2020, Normandy County Council, and
́
̂
Canceropole Nord-Ouest for funding. Thanks is also given to
the National Mass Spectrometry Facility (NMSF) at Swansea
University.
REFERENCES
■
(1) (a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014,
57, 10257. (b) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med.
Chem. 2014, 57, 5845.
(2) (a) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52,
6752. (b) Nadin, A.; Hattotuwagama, C.; Churcher, I. Angew. Chem.,
Int. Ed. 2012, 51, 1114. (c) Murray, C. W.; Rees, D. C. Angew. Chem.,
Int. Ed. 2016, 55, 488.
Figure 2. Alternative N-protecting groups, and proposed π−cation
stabilization
(3) For recent synthetic developments, see: (a) For C−H
functionalization: Maetani, M.; Zoller, J.; Melillo, B.; Verho, O.;
Kato, N.; Pu, J.; Comer, E.; Schreiber, S. L. J. Am. Chem. Soc. 2017, 139,
11300. (b) For 2 + 2: Sakamoto, R.; Inada, T.; Sakurai, S.; Maruoka, K.
Org. Lett. 2016, 18, 6252. (c) For metalation approaches: Antermite,
D.; Degennaro, L.; Luisi, R. Org. Biomol. Chem. 2017, 15, 34.
(d) Hodgson, D. M.; Kloesges, J. Angew. Chem., Int. Ed. 2010, 49, 2900.
(e) Pancholi, A. K.; Geden, J. V.; Clarkson, G. J.; Shipman, M. J. Org.
Chem. 2016, 81, 7984. (f) Parisi, G.; Capitanelli, E.; Pierro, A.;
Romanazzi, G.; Clarkson, G. J.; Degennaro, L.; Luisi, R. Chem.
Commun. 2015, 51, 15588. (g) Cyclisation; Wright, K.; Drouillat, B.;
Menguy, L.; Marrot, J.; Couty, F. Eur. J. Org. Chem. 2017, 2017, 7195.
(h) Couty, F.; Drouillat, B.; Evano, G.; David, O. Eur. J. Org. Chem.
2013, 2013, 2045.
(4) Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A.
W.; Wilson, D. M.; Wood, A. Nat. Chem. 2018, 10, 383.
(5) Maetani, M.; Kato, N.; Jabor, V. A. P.; Calil, F. A.; Nonato, M. C.;
Scherer, C. A.; Schreiber, S. L. ACS Med. Chem. Lett. 2017, 8, 438.
(6) Yagil, Y.; Miyamoto, M.; Frasier, L.; Oizumi, K.; Koike, H. Am. J.
Hypertens. 1994, 7, 637.
varied steric requirements (tBu or Me) were unsuccessful, giving
no reaction. Similarly, acetyl and benzhydryl group also resulted
in no conversion. The reactivity of the Ac or Bh groups may be
explained by a change in the electronics of the carbocation or
complexation of the Lewis basic sites with the catalyst. On the
other hand, the similarity of the carbamates suggest a positive
enhancing role of the Cbz group. The reason for this effect is
unclear, but we propose that the aryl ring provides a stabilizing
interaction with the carbocation to lower the barrier to
carbocation formation. This may occur through a cation−π
interaction as illustrated in Figure 2,20 or alternatively through a
directing effect on the catalyst.
In summary, we have developed a Friedel−Crafts alkylation
with readily available azetidinols using calcium(II) catalysis to
form diarylazetidines. This is compatible with a variety of
phenols and heteroaromatic nucleophiles to afford a wide range
of 3,3-diarylazetidines. These provide attractive functionality for
inclusion as screening compounds or incorporation into
medicinal chemistry programs. The Cbz group is shown to be
crucial to a successful reaction. Further efforts to exploit and
develop the Cbz-enhanced reactivity are underway.
(7) For recent examples: (a) Kirichok, A. A.; Shton, I.; Kliachyna, M.;
Pishel, I.; Mykhailiuk, P. K. Angew. Chem., Int. Ed. 2017, 56, 8865.
(b) Kirichok, A. A.; Shton, I. O.; Pishel, I. M.; Zozulya, S. A.; Borysko, P.
O.; Kubyshkin, V.; Zaporozhets, O. A.; Tolmachev, A. A.; Mykhailiuk,
́
P. K. Chem. - Eur. J. 2018, 24, 5444. (c) Guerot, C.; Tchitchanov, B. H.;
Knust, H.; Carreira, E. M. Org. Lett. 2011, 13, 780. (d) Burkhard, J. A.;
Wagner, B.; Fischer, H.; Schuler, F.; Mu
Chem., Int. Ed. 2010, 49, 3524.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
̈
ller, K.; Carreira, E. M. Angew.
(8) Lowe, J. T.; Lee IV, M. D.; Akella, L. B.; Davoine, E.; Donckele, E.
J.; Durak, L.; Duvall, J. R.; Gerard, B.; Holson, E. B.; Joliton, A.;
Experimental procedures, characterization data, and
copies of 1H and 13C NMR spectra (PDF)
́
Kesavan, S.; Lemercier, B. C.; Liu, H.; Marie, J.-C.; Mulrooney, C. A.;
Muncipinto, G.; Welzel-O’Shea, M.; Panko, L. M.; Rowley, A.; Suh, B.-
D
Org. Lett. XXXX, XXX, XXX−XXX