C O M M U N I C A T I O N S
Table 3. Additions of Allene 5 to Aldehydes
resulting unsaturated ketone products can be controlled by a chiral
catalyst. Full development of the asymmetric addition of alkynes
to acylsilanes as well as the enantioselective Cr(III)-catalyzed
reactions with silyloxyallenes are underway and will be reported
in due course.
Acknowledgment. Financial support for this work has been
provided by Northwestern University, the NSF, and the PRF. K.A.S.
thanks Abbott, Amgen, 3M, and Boehringer Ingelheim for generous
research support. Wacker Chemical, FMCLithium, and BASF have
provided reagents for this work. We thank Dr. Jacob Janey (Merck)
for the kind gift of (-)-1,2-cis-aminoindanol.
Supporting Information Available: Experimental procedures and
spectral data for new compounds. This material is available free of
entry
R
R
′
E:Za
yield (%)b
1
2
3
4
5
6
7
8
Ph
H
H
H
H
H
H
H
1:20
1:20
1:20
1:20
1:20
1:20
1:20
1:20
91 (10)
96 (14)
97 (15)
98 (16)
78 (6)
4-Cl-Ph
4-MeO-Ph
2-Nap
PhCH2CH2
t-Bu
C3H5
95 (17)c
56 (18)
18 (19)c
Ph
COMe
a Determined by 1H NMR spectroscopy. b Isolated yield. c 20 mol % of
Sc(OTf)3.
References
(1) (a) Seebach, D. Angew. Chem., Int. Ed. Engl. 1979, 18, 239-258. (b)
Johnson, J. S. Angew. Chem., Int. Ed. 2004, 43, 1326-1328. (c) Enders,
D.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534-541.
enantioenriched propargylsilane (22) in 74% ee.16 The exposure
of (-)-22 to 5 mol % of n-BuLi at -78 °C provided chiral allene
(+)-23 with minimal erosion of stereochemical information. This
process is presumably controlled by a [1,2]-Brook rearrangement-
initiated SE2′ pathway from an intermediate such as A, and studies
to explore this rearrangement further are underway.17 Initial results
employing (+)-23 and Sc(OTf)3 proved unpromising for chirality
transfer.18 While the geometry of (+)-23 enforces a strong
preference for the electrophile to approach away from the phenyl
substituent (E vs Z selectivity), there is not sufficient bias to control
the facial selectivity of the aldehyde (enantioselectivity).
(2) Chinchilla, R.; Najera, C. Chem. ReV. 2000, 100, 1891-1928.
(3) (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. ReV. 2003, 103,
811-891. For mechanistic studies, see: (b) Aggarwal, V. K.; Fulford, S.
Y.; Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2005, 44, 1706-1708. (c)
Price, K. E.; Broadwater, S. J.; Walker, B. J.; McQuade, D. T. J. Org.
Chem. 2005, 70, 3980-3987. (d) Krafft, M. E.; Haxell, T. F. N.; Seibert,
K. A.; Abboud, K. A. J. Am. Chem. Soc. 2006, 128, 4174-4175.
(4) Selected examples of enantioselective MBH reactions: (a) Brzezinski,
L. J.; Rafel, S.; Leahy, J. W. J. Am. Chem. Soc. 1997, 119, 4317-4318.
(b) Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am.
Chem. Soc. 1999, 121, 10219-10220. (c) McDougal, N. T.; Schaus, S.
E. J. Am. Chem. Soc. 2003, 125, 12094-12095. (d) Also see ref 3a.
(5) (a) Wang, L. C.; Luis, A. L.; Agaplou, K.; Jang, H. Y.; Krische, M. J. J.
Am. Chem. Soc. 2002, 124, 2402-2403. (b) Frank, S. A.; Mergott, D. J.;
Roush, W. R. J. Am. Chem. Soc. 2002, 124, 2404-2405. (c) Krafft, M.
E.; Haxell, T. F. N. J. Am. Chem. Soc. 2005, 127, 10168-10169.
(6) (a) Krause, N.; Hashmi, S. Modern Allene Chemistry; Wiley-VCH:
Weinheim, Germany 2004. (b) Krause, N.; Hoffmann-Roder, A. Tetra-
hedron 2004, 60, 11671-11694.
(7) Kuwajima, I.; Kato, M. Tetrahedron Lett. 1980, 21, 623-626.
(8) Reich, H. J.; Olson, R. E.; Clark, M. C. J. Am. Chem. Soc. 1980, 102,
1423-1424.
(9) Brook, A. G. Acc. Chem. Res. 1974, 7, 77-84.
(10) (a) Merault, G.; Bourgeoi, P.; Dunogues, J.; Duffaut, N. J. Organomet.
Chem. 1974, 76, 17-27. (b) Fleming, I.; Perry, D. A. Tetrahedron 1981,
37, 4027-4034. (c) Kato, M.; Kuwajima, I. Bull. Chem. Soc. Jpn. 1984,
57, 827-830. (d) Reich, H. J.; Eisenhart, E. K.; Olson, R. E.; Kelly, M.
J. J. Am. Chem. Soc. 1986, 108, 7791-7800. (e) Stergiades, I.; Tius, M.
A. J. Org. Chem. 1999, 64, 7547-7551. (f) Li, G. G.; Wei, H. X.; Phelps,
B. S.; Purkiss, D. W.; Kim, S. H. Org. Lett. 2001, 3, 823-826. (g)
Yoshizawa, K.; Shioiri, T. Tetrahedron Lett. 2006, 47, 757-761.
(11) (a) Mattson, A. E.; Bharadwaj, A. R.; Scheidt, K. A. J. Am. Chem. Soc.
2004, 126, 2314-2315. (b) Myers, M. C.; Bharadwaj, A. R.; Milgram,
B. C.; Scheidt, K. A. J. Am. Chem. Soc. 2005, 127, 14675-14680. (c)
Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905-508. (d) Mattson, A.
E.; Zuhl, A. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2006,
128, 4932-4933.
(12) For related approaches with racemic allenolates, see: (a) Sato, Y.;
Takeuchi, S. Synthesis 1983, 734-735. (b) Marino, J. P.; Linderman, R.
J. J. Org. Chem. 1983, 48, 4621-4628. (c) Tsuda, T.; Yoshida, T.;
Saegusa, T. J. Org. Chem. 1988, 53, 1037-1040. (d) Ramachandran, P.
V.; Rudd, M. T.; Burghardt, T. E.; Reddy, M. V. R. J. Org. Chem. 2003,
68, 9310-9316. (e) Gudimalla, N.; Frohlich, R.; Ho¨ppe, D. Org. Lett.
2004, 6, 4005-4008. (f) Xue, S.; He, L.; Han, K. Z.; Liu, Y. K.; Guo, Q.
X. Synlett 2005, 1247-1250. From propargyl alcohols, see: (g) Trost,
B. M.; Oi, S. J. Am. Chem. Soc. 2001, 123, 1230-1231. (h) Trost, B. M.;
Chung, C. K. J. Am. Chem. Soc. 2006, 128, 10358-10359.
(13) See Supporting Information for details.
With substrate control proving unlikely, we examined chiral
catalysts for the addition of racemic silyloxyallenes (e.g., 23).
Gratifyingly, the use of (-)-(salen)Cr(III)-SbF6 with racemic
silyloxyallene 23 (1 equiv) and 2-chlorobenzaldehyde (1 equiv)
affords carbinol 24 in 92% ee, demonstrating that a chiral catalyst
can modulate the facial selectivity of both reagents with a high
level of control.19
(14) This 1,2-Brook process works in THF but not toluene or Et2O.
(15) 10 mol% of Sm(OTf)3, Yb(OTf)3, La(OTf)3, In(OTf)3, or Eu(OTf)3 as
the Lewis acid did not afford product.
(16) For reviews on asymmetric alkyne additions, see: (a) Pu, L. Tetrahedron
2003, 59, 9873-9886. (b) Cozzi, P. G.; Hilgraf, R.; Zimmermann, N.
Eur. J. Org. Chem. 2004, 4095-4105. For a recent addition of an alkyne
to a glyoxylate-derived acylsilane in 64% ee and 30% yield, see: (c)
Nicewicz, D. A.; Johnson, J. S. J. Am. Chem. Soc. 2005, 127, 6170-
6171.
(17) Buckle, M. J. C.; Fleming, I.; Gil, S.; Pang, K. L. C. Org. Biomol. Chem.
2004, 2, 749-769.
(18) The addition of 24 to benzaldehyde afforded 8 in 98% yield and 62:38
er.
In summary, silyloxyallenes generated from acylsilanes undergo
scandium(III)-catalyzed R-acylvinyl additions to a variety of
aldehydes. A wide range of â-substitution on the allene is
accommodated with excellent yields and a high degree of control
over the new alkene geometry. The carbinol stereocenter of the
(19) (a) Ruck, R. T.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 2882-
2883. (b) Ruck, R. T.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2003, 42,
4771-4774.
JA0653674
9
J. AM. CHEM. SOC. VOL. 128, NO. 48, 2006 15383