A R T I C L E S
Scheme 1
Ney and Wolfe
in 1988.17 The C-H activation of tert-butylamine with Cp*-
(PMe3)IrH2 provided an azairidacyclobutane complex, which
was found to undergo insertion of tert-butylisocyanide into the
Ir-N bond. In the second study, Hillhouse reported that N-tosyl-
2-alkylaziridines undergo oxidative addition to (bpy)Ni(COD)
or (bpy)NiEt2 to afford azanickelacyclobutanes via an SN2
mechanism.18 Although small-molecule insertion chemistry of
the nickel complexes was not reported, treatment with oxygen
led to C-N bond-forming reductive elimination that regenerated
the substituted aziridines. The experiments described by Hill-
house represent the first and only examples of oxidative addition
reactions between aziridines and late transition metal complexes
that afford isolable azametallacyclobutane products.
unprecedented (e.g., the conversion of 1 to 2 or 3) or have not
been thoroughly explored (e.g., the formation of 1 from an
aziridine).
Only two studies have examined the synthesis and reactivity
of late transition metal azametallacyclobutane complexes that
contain an anionic amido group and a saturated backbone (e.g.,
1).17-22 The first example of the synthesis and isolation of an
azametallacyclobutane of this type was reported by Bergman
In this Article we describe the first syntheses of azapallada-
cyclobutane complexes of the general structure 1,21,22 which
were accomplished through the oxidative addition of aziridines
to Pd(0) complexes derived from Pd2(dba)3 and 1,10-phenath-
roline (phen). We also demonstrate the unprecedented CuI-
catalyzed insertion of alkenes into the azametallacyclobutanes,
which occurs in an intramolecular fashion to provide unusual
bridged bicyclic palladacycles. The azapalladabicyclo[3.2.1]-
octane products of these reactions undergo C-X (X ) Br, OAc)
bond-forming reductive elimination upon treatment with CuBr2
or PhI(OAc)2 to provide substituted cyclopentylamine deriva-
tives in moderate yield.
(11) For catalytic reactions involving olefin or alkyne insertion into transition
metal amido complexes see: (a) Casalnuovo, A. L.; Calabrese, J. C.;
Milstein, D. J. Am. Chem. Soc. 1988, 110, 6738-6744. (b) Tsutsui, H.;
Narasaka, K. Chem. Lett. 1999, 45-46. (c) Kitamura, M.; Zaman, S.;
Narasaka, K. Synlett 2001, 974-976. (d) Helaja, J.; Go¨ttlich, R. Chem.
Commun. 2002, 720-721. (e) Ney, J. E.; Wolfe, J. P. Angew. Chem. Int.
Ed. 2004, 43, 3605-3608. (f) Bertrand, M. B.; Wolfe, J. P. Tetrahedron
2005, 61, 6447-6459. (g) Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc. 2005,
127, 8644-8651. (h) Nakhla, J. S.; Kampf, J. W.; Wolfe, J. P. J. Am. Chem.
Soc. 2006, 128, 2893-2901. (i) Brice, J. L.; Harang, J. E.; Timokhin, V.
I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 2868-2869.
(j) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179-7181.
(12) For general reviews covering the insertion of olefins into metal-carbon
bonds see: (a) Yamamoto, A. J. Chem. Soc., Dalton Trans. 1999, 1027-
1037. (b) Yamamoto, A.; Kayaki, Y.; Nagayama, K.; Shimizu, I. Synlett
2000, 925-937. (c) Beletskaya, I. P.; Cheprakov, A. V. Chem. ReV. 2000,
100, 3009-3066.
(13) For catalytic reactions involving olefin insertions into metal alkyls bearing
â-hydrogen atoms see: (a) Rix, F. C.; Brookhart, M. J. Am. Chem. Soc.
1995, 117, 1137-1138. (b) Johnson, L. K.; Killian, C. M.; Brookhart, M.
J. Am. Chem. Soc. 1995, 117, 6414-6415. (c) Gottfried, A. C.; Brookhart,
M. Macromolecules 2001, 34, 1140-1142. (d) Oh, C. H.; Rhim, C. Y.;
Kang, J. H.; Kim, A.; Park, B. S.; Seo, Y. Tetrahedron Lett. 1996, 37,
8875-8878. (e) Schweizer, S.; Song, Z.-Z.; Meyer, F. E.; Parsons, P. J.;
De Meijere, A. Angew. Chem. Int. Ed. 1999, 38, 1452-1454. (f) Quan, L.
G.; Cha, J. K. J. Am. Chem. Soc. 2002, 124, 12424-12425. (g) Widen-
hoefer, R. A. Acc. Chem. Res. 2002, 35, 905-913 and references therein.
(h) Perch, N. S.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 6332-
6346.
Results
Oxidative Addition Reactions. In our preliminary experi-
ments, we sought to examine the synthesis of azapalladacy-
clobutane complexes via the oxidative addition of aziridines to
Pd(0). Palladium was chosen for these studies due to its
demonstrated utility in catalytic cross-coupling reactions that
involve oxidative addition, small-molecule insertion, and reduc-
tive elimination processes. We initially examined the stoichio-
metric reaction of N-tosyl-2-butylaziridine (5) with Pd/phosphine
complexes or mixtures of Pd2(dba)3 and phosphine or amine
ligands. As shown in Table 1, treatment of 5 with Pd[PCy3]2 or
Pd[P(t-Bu)2Me]2 provided N-tosylimine 6, which presumably
results from oxidative addition followed by â-hydride elimina-
tion, as the sole detectable product (entries 3 and 4).23
Interestingly, although no reaction occurred between 5 and
mixtures of Pd2(dba)3/phen (entry 5),24 subjection of the
(14) (a) Cardenas, D. J. Angew. Chem. Int. Ed. 1999, 38, 3018-3020. (b)
Cardenas, D. J. Angew. Chem. Int. Ed. 2003, 42, 384-387. (c) Luh, T.-Y.;
Leung, M.-K.; Wong, K.-T. Chem. ReV. 2000, 100, 3187-3204. (d)
Netherton, M. R.; Fu, G. C. AdV. Synth. Catal. 2004, 346, 1525-1532. (e)
Netherton, M. R.; Fu, G. C. Top. Organomet. Chem. 2005, 14, 85-108.
(15) Catalytic reactions involving C(sp2)-N bond-forming reductive elimination
are well-known. For reviews see: (a) Muci, A. R.; Buchwald, S. L. Top.
Curr. Chem. 2002, 219, 131-209. (b) Hartwig, J. F. Pure Appl. Chem.
1999, 71, 1417-1423. (c) Barluenga, J.; Valdes, C. Chem. Commun. 2005,
4891-4901.
(21) Azapalladacyclobutanes and azaplatinacyclobutanes that contain a neutral
amino group with the general structure 1a have been prepared via
aminopalladation or aminoplatination of alkenes. See: (a) Briggs, J. R.;
Crocker, C.; McDonald, W. S.; Shaw, B. L. J. Chem. Soc., Dalton Trans.
1981, 575-580. (b) Green, M.; Sarhan, J. K. K.; Al-Najjar, I. M.
Organometallics 1984, 3, 520-524 and references therein. (c) De Renzi,
A.; Di Blasio, B.; Morelli, G.; Vitagliano, A. Inorg. Chim. Acta 1982, 63,
233-241. (d) Åkermark, B.; Zetterberg, K. J. Am. Chem. Soc. 1984, 106,
5560-5561. (e) Hegedus, L. S.; Åkermark, B.; Zetterberg, K.; Olsson, L.
F. J. Am. Chem. Soc. 1984, 106, 7122-7126. (f) Arnek, R.; Zetterberg, K.
Organometallics 1987, 6, 1230-1235. (g) Zhang, L.; Zetterberg, K.
Organometallics 1991, 10, 3806-3813.
(16) Reductive elimination reactions that form C(sp3)-N bonds are rare and
often require oxidative conditions; for examples see: (a) Ba¨ckvall, J.-E.
Tetrahedron Lett. 1978, 19, 163-166. (b) Koo, K.; Hillhouse, G. L.
Organometallics 1995, 14, 4421-4423. (c) Zabawa, T. P.; Kasi, D.;
Chemler, S. R. J. Am. Chem. Soc. 2005, 127, 11250-11251. (d) Streuff,
J.; Ho¨velmann, C. H.; Nieger, M.; Muniz, K. J. Am. Chem. Soc. 2005,
127, 14586-14587. (e) Ref 11i.
(17) Klein, D. P.; Hayes, J. C.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110,
3704-3706.
(18) Lin, B. L.; Clough, C. R.; Hillhouse, G. L. J. Am. Chem. Soc. 2002, 124,
2890-2891.
(19) The oxidative addition of ethyleneimine to K2PtCl4 in aqueous HCl has
been reported to afford KPt(CH2CH2N+H3)Cl5. See: Mitchenko, S. A.;
Slinkin, S. M.; Vdovichenko, A. N.; Zamashchikov, V. V. Metallorg. Khim.
1991, 4, 1031-1035.
(20) For a discussion of the synthesis and reactivity of oxymetallacyclobutanes
of Rh, Ir, Pt, and Ru see: (a) Schlodder, R.; Ibers, J. A.; Lenarda, M.;
Graziani, M. J. Am. Chem. Soc. 1974, 96, 6893-6900. (b) Lenarda, M.;
Ros, R.; Traverso, O.; Pitts, W. D.; Baddley, W. H.; Graziani, M. Inorg.
Chem. 1977, 16, 3178-3182. (c) Zlota, A. A.; Frolow, F.; Milstein, D. J.
Am. Chem. Soc. 1990, 112, 6411-6413. (d) Calhorda, M. J.; Galvao, A.
M.; Unaleroglu, C.; Zlota, A. A.; Frolow, F.; Milstein, D. Organometallics
1993, 12, 3316-3325. (e) Hartwig, J. F.; Bergman, R. G.; Andersen, R.
A. Organometallics 1991, 10, 3326-3344. (f) Hartwig, J. F.; Bergman, R.
G.; Andersen, R. A. Organometallics 1991, 10, 3344-3362.
(22) For examples of four-membered platinalactam and palladalactam complexes
see: (a) Henderson, W.; Oliver, A. G.; Nicholson, B. K. Inorg. Chim. Acta
2000, 298, 84-89. (b) Henderson, W.; Nicholson, B. K.; Oliver, A. G. J.
Chem. Soc., Dalton Trans. 1994, 1831-1835. (c) Henderson, W.; Fawcett,
J.; Kemmitt, R. D. W.; Proctor, C.; Russell, D. R. J. Chem. Soc., Dalton
Trans. 1994, 3085-3090.
9
15416 J. AM. CHEM. SOC. VOL. 128, NO. 48, 2006