J. Notni, H. Görls, E. Anders
FULL PAPER
N–H) ppm. 13C NMR (62.9 MHz, DMSO): δ = 44.6, 44.8, 45.3,
[2]
[3]
E. Kimura, T. Koike, Adv. Inorg. Chem. 1997, 44, 229–261.
L. C. Myers, M. P. Terranova, A. E. Ferentz, G. Wagner, G.-L.
Verdine, Science 1993, 261, 1164.
R. G. Matthews, C. W. Goulding, Curr. Opin. Chem. Biol. 1997,
1, 332–339.
K. Peariso, Z. S. Zhou, A. E. Smith, R. G. Matthews, J. E.
Penner-Hahn, Biochemistry 2001, 40, 987–993.
H.-W. Park, S. R. Boduluri, J. F. Moomaw, P. J. Casey, L. S.
Beese, Science 1997, 275, 1800–1805.
J. J. Wilker, S. J. Lippard, Inorg. Chem. 1997, 36, 969–978.
R. Burth, H. Vahrenkamp, Z. Anorg. Allg. Chem. 1998, 624,
381–385.
46.0 ppm. IR: ν = 3298 m, 2944 m, 2887 m, 1467 m, 1342 w,
˜
1071 vs, 973 s, 945 s, 798 s, 621 vs cm–1.
[4]
[5]
[6]
Preparation of the Thiolate Complexes: The ligand (4 mmol) was
added with stirring to 40 mL of a hot 0.1 solution of Zn(ClO4)2·
6H2O in methanol. Stirring and heating were continued for an
additional 15 min. Depending on the ligand, some precipitation oc-
curred. A solution of 4 mmol of the thiol in 8 mL of 0.5 KOH
was then added dropwise, whereupon potassium perchlorate pre-
cipitated. The solution was filtered and, after a varying amount of
time, colorless crystals separated spontaneously. The precipitates
were filtered off and, if necessary, recrystallized from methanol.
All complexes revealed a 1:1:1:1 composition of zinc/macrocyclic
amine/thiolate/perchlorate, consistent with the general formula
[Zn(L)(SR)]ClO4.
[7]
[8]
[9]
U. Brand, M. Rombach, J. Seebacher, H. Vahrenkamp, Inorg.
Chem. 2001, 40, 6151–6157.
M. Ji, B. Benkmil, H. Vahrenkamp, Inorg. Chem. 2005, 44,
3518–3523.
[10]
[11]
B. S. Hammes, C. J. Carrano, Inorg. Chem. 1999, 38, 4593–
4600.
B. S. Hammes, C. J. Carrano, Inorg. Chem. 2001, 40, 919–927.
J. N. Smith, Z. Shirin, C. J. Carrano, J. Am. Chem. Soc. 2003,
125, 868–869.
C. A. Grapperhaus, T. Tuntulani, J. H. Reibenspies, M. Y. Dar-
ensbourg, Inorg. Chem. 1998, 37, 4052–4058.
J. F. Woessner Jr, FASEB J. 1991, 5, 2145–2154.
H. Nagase, J. F. Woessner Jr, J. Biol. Chem. 1999, 274, 21491–
21494.
Note: It is important that the precipitation starts as quickly as pos-
sible. Prolonged standing of concentrated solutions lowers the
yields and the purity of the products considerably, most likely due
to oxidation processes. Thus, it is best to induce the formation of
crystals by adding a seed crystal or by ultrasound treatment. If the
precipitation of the complex occurs instantly upon addition of the
potassium thiolate, which is not normally the case, separation from
the solid potassium perchlorate is difficult. In such cases, the syn-
thesis should be carried out using a sodium thiolate solution. The
desired complex will then be obtained in a good yield, although
without the removal of the alkali metal perchlorate.
[12]
[13]
[14]
[15]
[16]
[17]
H. Matter, M. Schudok, Curr. Opin. Drug Discovery Dev. 2004,
7, 513–535.
[18]
[19]
N. Borkakoti, Biochem. Soc. Trans. 2004, 32, 17–20.
S. P. Salowe, A. I. Marcy, G. C. Cuca, C. K. Smith, I. E.
Kopka, W. K. Hagmann, J. D. Hermes, Biochemistry 1992, 31,
4535–4540.
R. C. Holz, S. P. Salowe, C. K. Smith, G. C. Cuca, L. Que Jr,
J. Am. Chem. Soc. 1992, 114, 9611–9614.
E. B. Springman, E. L. Angleton, H. Birkedahl-Hansen, H. E.
Van Wart, Proc. Natl. Acad. Sci. USA 1990, 87, 364–368.
H. E. Van Wart, H. Birkedahl-Hansen, Proc. Natl. Acad. Sci.
USA 1990, 87, 5578–5582.
General Properties and Solubility: All thiolate complexes 17–28
form colorless crystalline solids. Substances featuring macrocycles
with ring sizes from 14 to 16 atoms and four nitrogen atoms (i.e.
23–27) are readily soluble in chloroform. All complexes, with the
exception of 28, are soluble in acetonitrile and nitromethane, but
only partially in methanol. Compounds 28 show only low solubility
in all solvents mentioned, but are soluble in DMSO. Other data
[elemental analytical data, melting points, and yields (Table 1), IR
and mass spectroscopic data (Table 2), and 1H (Table 3) and 13C
NMR (Table 4) data] are given in the respective tables.
[20]
[21]
[22]
[23] B. M. Bridgewater, T. Fillebeen, R. A. Friesner, G. Parkin, J.
Chem. Soc., Dalton Trans. 2000, 4494–4496.
[24]
[25]
[26]
[27]
[28]
D.-W. Christianson, C. A. Fierke, Acc. Chem. Res. 1996, 29,
331–339.
T. Wingo, C. Tu, P. J. Laipis, D. N. Silverman, Biochem. Bio-
phys. Res. Commun. 2001, 288, 666–669.
G. Protoschill-Krebs, C. Wilhelm, J. Kesselmeier, Atmos. Envi-
ron. 1996, 30, 3151–3156.
S. Schenk, J. Kesselmeier, E. Anders, Chem. Eur. J. 2004, 10,
3091–3105.
M. Bräuer, E. Anders, S. Sinnecker, W. Koch, M. Rombach,
H. Brombacher, H. Vahrenkamp, Chem. Commun. 2000, 647–
648.
M. Rombach, H. Vahrenkamp, Inorg. Chem. 2001, 40, 6144–
6150.
J. E. Richman, T. J. Atkins, J. Am. Chem. Soc. 1974, 96, 2268–
2270.
T. Koike, M. Takamura, E. Kimura, J. Am. Chem. Soc. 1994,
116, 8443–8449.
A.-W. Addison, E. Sinn, Inorg. Chem. 1983, 22, 1225–1228.
R. Yang, L.-L. Zompa, Inorg. Chem. 1976, 15, 1499–1502.
L.-L. Zompa, Inorg. Chem. 1978, 17, 2531–2536.
M. T. S. Amorim, S. Chave, R. Delgado, J. J. R. F. da Silva, J.
Chem. Soc., Dalton Trans. 1991, 3065–3072.
E. K. Barefield, F. Wagner, Inorg. Chem. 1973, 12, 2435–2439.
R. Luckay, T. E. Chantson, J. H. Reibenspies, R. D. Hancock,
J. Chem. Soc., Dalton Trans. 1995, 1363–1367.
F. Wagner, M. T. Mocella, M. J. D’Aniello Jr, A. H.-J. Wang,
E. K. Barefield, J. Am. Chem. Soc. 1974, 96, 2625–2627.
B. Bosnich, C. K. Poon, M. L. Tobe, Inorg. Chem. 1965, 4,
1102–1108.
Crystal Structure Determination:[45] The intensity data for com-
pound 23b were collected with a Nonius CAD4 diffractometer and
for the other compounds with
a Nonius KappaCCD dif-
fractometer, using graphite-monochromated Mo-Kα radiation.
Data were corrected for Lorentz and polarization effects, but not
for absorption.[46–48] The structures were solved by direct methods
(SHELXS[49]) and refined by full-matrix least-squares techniques
2
against Fo (SHELXL-97[50]). For all compounds except for 17b,
19a, 20a, and 21b, the hydrogen atoms of the amine groups were
located by difference Fourier synthesis and refined isotropically. All
other hydrogen atoms were included at calculated positions with
fixed thermal parameters. All non-hydrogen atoms were refined an-
isotropically.[50] The absolute structures of compounds 16, 19a, 21a,
and 28b could not be determined because they show racemic twin-
ning. XP (SIEMENS Analytical X-ray Instruments, Inc.) was used
for structure representations. The drawings in this paper were gen-
erated using PLATON.[51]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
Acknowledgments
[36]
[37]
Financial support of this work by the Deutsche Forschungsgemein-
schaft (SFB 436: “Metal-Mediated Reactions Modeled After Na-
ture”) is gratefully acknowledged.
[38]
[39]
[1] G. Parkin, Chem. Rev. 2004, 104, 699–767.
1454
www.eurjic.org
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2006, 1444–1455