A. Boto et al. / Bioorg. Med. Chem. Lett. 16 (2006) 6073–6077
6077
2. These transporters can be used to introduce cytotoxic
compounds into the tumour cell, or inversely, can be
destroyed with antibodies or inhibited with certain
drugs, depriving the cell of vital nutrients. For an
example, see: Palmer, C. F.; Mc Evoy-Bowe, E.;
Meehan, G. V.; Piva, T.; Rigano, D.; Favot, P.; West,
M.; Mccabe, M.; Grenville, P.; Miller, D. J. Patent
WO9003399, 1990.
3. (a) Mittal, S.; Song, X.; Vig, B. S.; Landowski, C. P.; Kim,
I.; Hilfinger, J. M.; Amidon, G. L. Mol. Pharm. 2005, 2,
37; (b) Balcome, S.; Park, S.; Quirk-Dorr, D. R.; Hafner,
L.; Phillips, L.; Tretyakova, N. Chem. Res. Toxicol. 2004,
17, 950; (c) Bissery, M. C. Patent WO0168066, 2001; (d)
Haines, D. R.; Fuller, R. W.; Ahmad, S.; Vistica, D. T.;
Marquez, V. E. J. Med. Chem. 1987, 30, 542.
4. (a) Goldenberg, G.; Begleiter, A. Pharmacol. Ther. 1980,
8, 237; (b) Goldenberg, G.; Lam, H. Y. P.; Begleiter, A.
J. Biol. Chem. 1979, 254, 1057; (c) Vistica, D. T.; Toal,
J. N.; Rabinovitz, M. Biochem. Pharmacol. 1987, 27,
2865.
assembly, chromosome segregation, telomere mainte-
nance and metabolism of reactive oxygen species.14
Therefore, these data are consistent with compounds 5
and 34 behaving as genotoxins. Consequently, an attrac-
tive hypothesis would be that compounds 5 and 34
induce genomic instability through alteration of one/
some of the above-mentioned processes. This hypothesis
is currently being addressed.
In summary, new cytotoxic amino acids derived from
3-iodo- or 3-bromo-phenylglycine are described herein.
Many of these compounds were synthesized using one-
pot fragmentation–arylation or halogenation reactions
with hypervalent iodine reagents. The mechanism of ac-
tion of the (haloaryl)glycines was studied in S. cerevisi-
ae, showing that these compounds were genotoxic.
Acknowledgments
5. Strazzolini, P.; Dall’Arche, M. G.; Zossi, M.; Pavsler, A.
Eur. J. Org. Chem. 2004, 4710, and references cited
therein.
6. (a) Conti, P.; Roda, G.; Stabile, H.; Vanoni, M. A.;
Curti, B.; DeAmici, M. Il Farmaco 2003, 58, 683; (b)
Antczak, C.; Beauvois, B.; Monneret, C.; Florent, J.-C.
Bioorg. Med. Chem. 2001, 11, 2843; (c) Mzengeza, S.;
Yang, C. M.; Whitney, R. A. J. Am. Chem. Soc. 1987,
109, 276.
The work carried out in CSIC was supported by FAES
FARMA S.A. (Research Contract OTT-2004066).
J.A.G. and M.M.M. have enjoyed a contract with FAES
FARMA, S.A. C.J.S. thanks a CSIC predoctoral fellow-
ship, also financed by FAES FARMA S.A.
7. Graber, R.; Losa, G. A. Int. J. Cancer 1995, 62, 443, and
references cited therein.
Supplementary data
8. (a) Wang, H. P.; Lee, O.; Lee, S. J. Patent WO9904792,
1999; See also: (b) Adamczyk, M.; Reddy, R. E. Tetra-
hedron: Asymmetry 2001, 12, 1047.
9. Hatanaka, T.; Ohizumi, I.; Nezu, J.-I. Patent EP1561471,
2005.
Spectroscopic data for selected compounds, other
cytotoxic activities, materials and general procedures
for the determination of the cytotoxic activity and the
mechanism of action studies. Supplementary data
associated with this article can be found, in the online
´
10. Boto, A.; Gallardo, J. A.; Hernandez, R.; Saavedra, C. J.
Tetrahedron Lett. 2005, 46, 7807.
´
´
11. Boto, A.; Hernandez, R.; Montoya, A.; Suarez, E.
Tetrahedron Lett. 2002, 43, 8269.
12. For a review on chiral arylglycines, see: Williams, R. M.;
Hendrix, J. A. Chem. Rev. 1992, 92, 889.
References and notes
13. Simon, J. A.; Szankasi, P.; Nguyen, D. K.; Ludlow, C.;
Dunstan, H. M.; Roberts, C. J.; Jensen, E. L.; Hartwell, L.
H.; Friend, S. H. Cancer Res. 2000, 60, 328.
14. Pan, X.; Ye, P.; Yuan, D. S.; Wang, X.; Bader, J. S.;
Boeke, J. D. Cell 2006, 124, 1069.
1. For a review on the subject, see: Metabolism and action of
amino acid analog anti-cancer agents Ahluwalia, G. S.;
Grem, J. L.; Hao, Z.; Cooney, D. A. Pharmacol. Ther.
1990, 46, 243.