Total Synthesis of (+)-Migrastatin
SHORT COMMUNICATION
14: [α]2D0 = –6.6 (c = 0.99, CHCl3). 1H NMR (400 MHz, CDCl3): δ
= 8.13 (br. s, 1 NH), 7.73 (m, 4 H), 7.41 (m, 6 H), 6.69 (dt, J =
15.5 and 6.4 Hz, 1 H), 6.25 (d, J = 15.8 Hz, 1 H), 5.37 (d, J =
10.3 Hz, 1 H), 4.54 (d, J = 9.5 Hz, 1 H), 3.78 (dd, J = 11.0 and
4.6 Hz, 1 H), 3.67 (dd, J = 11.1 and 5.9 Hz, 1 H), 3.48 (d, J =
7.4 Hz, 1 H), 3.27 (s, 3 H), 3.16 (m, 1 H), 3.01 (m, 1 H), 2.65–2.79
(m, 3 H), 2.24–2.38 (m, 5 H), 1.66 (s, 3 H), 1.07 (s, 9 H), 0.90 (s, 9
H), 0.88 (d, J = 7.7 Hz, 3 H), 0.78–0.85 (m, 12 H), 0.45 (q, J =
8 Hz, 6 H), 0.03 (s, 3 H), 0.00 (s, 3 H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 202.6, 171.5, 140.1, 135.8, 135.8, 134.3, 134.1, 133.6,
133.5, 132.4, 129.7, 127.8, 127.8, 85.4, 76.9, 72.9, 64.1, 59.1, 47.9,
37.5, 37.5, 37.4, 33.1, 29.9, 27.0, 26.2, 19.2, 18.5, 17.6, 14.3, 14.1,
6.9, 4.7, –3.8, –4.5 ppm. HRMS (ESI): calcd. for C49H79O7NSi3Na
[M + Na]+ 900.5062; found 900.5040.
1
1: [α]2D5 = +11.1 (c = 0.05, MeOH). H NMR (400 MHz, CDCl3):
δ = 7.75 (br. s, 1 NH), 6.50 (m, 1 H), 5.65 (dd, J = 10.4 and 1.7 Hz,
1 H), 5.59 (dd, J = 16.0 and 1.4 Hz, 1 H), 5.47–5.56 (m, 1 H), 5.24
(dd, J = 15.5 and 5.0 Hz, 1 H), 5.09 (d, J = 10.0 Hz, 1 H), 3.47
(dd, J = 9.0 and 5.0 Hz, 1 H), 3.30 (s, 3 H), 3.05 (dd, J = 8.6 and
2 Hz, 1 H), 2.87–3.02 (m, 2 H), 2.66–2.74 (m, 2 H), 2.50 (app t, J
= 7.0 Hz, 2 H), 2.38–2.47 (m, 2 H), 2.07–2.30 (m, 5 H), 1.86 (d, J
= 1.2 Hz, 3 H), 1.50–1.70 (m, 2 H), 1.30–1.39 (m, 2 H), 1.12 (d, J
= 7.3 Hz, 3 H), 0.96 (d, J = 6.6 Hz, 3 H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 210.9, 171.8, 164.0, 150.0, 133.2, 131.3,
130.7, 128.2, 122.3, 82.6, 78.1, 77.3, 57.0, 51.4, 40.1, 37.8, 37.8,
34.3, 32.1, 31.2, 30.5, 30.2, 26.1, 20.3, 13.5 ppm. HRMS (DCI+,
NH3): calcd. for C27H43O7N2 [M + NH4]+ 507.3070; found
507.3069.
Scheme 6. Completion of the total synthesis of migrastatin (1).
Reagents and conditions: a) THF/H2O/AcOH (1:1:3), 36 h, room
temp., 80%; b) mixed anhydride 19 (3 equiv.), pyridine (4 equiv.),
toluene, 48 h, room temp., 74%; c) NH4F (30 equiv.), MeOH, room
temp., 24 h, 81%; d) Dess–Martin periodinane (1.5 equiv.),
CH2Cl2, 0 °C to room temp. 3 h; e) Zn, PbCl2 (cat), CH2I2,
Ti(OiPr)4, THF, room temp., 54% yield for the last two steps; f)
[Ru]-I (20 mol-%), toluene (c = 0.5·10–3 ), reflux, 0.3 h, 39%; g)
HF·pyr complex, THF, room temp., 24 h, 62% yield.
Acknowledgments
We wish to thank Dr. Fisher and Dr. Trimmer, from Materia (US)
for a generous gift of Grubbs and Hoveyda–Grubbs catalysts.
[1] a) K. Nakae, Y. Yoshimoto, T. Sawa, Y. Homma, M. Hamada,
T. Takeuchi, M. Imoto, J. Antibiot. 2000, 53, 1130–1136; b) K.
Nakae, Y. Yoshimoto, M. Ueda, T. Sawa, Y. Takahashi, H.
Naganawa, T. Takeuchi, M. Imoto, J. Antibiot. 2000, 53, 1228–
1230; c) Y. Takemoto, K. Nakae, M. Kawatani, Y. Takahashi,
H. Naganawa, M. Imoto, J. Antibiot. 2001, 54, 1104–1107; d)
H. Nakamura, Y. Takahashi, H. Naganawa, K. Nakae, M. Im-
oto, M. Shiro, K. Matsumura, H. Watanabe, T. Kitahara, J.
Antibiot. 2002, 55, 442–444.
[2] E. J. Woo, C. M. Starks, J. R. Carney, R. Arslanian, L. Cada-
pan, S. Zavala, P. Licari, J. Antibiot. 2002, 55, 141–146.
[3] C. Gaul, J. T. Njardarson, S. J. Danishefsky, J. Am. Chem. Soc.
2003, 125, 6042–6043.
[4] a) C. Gaul, S. J. Danishefsky, Tetrahedron Lett. 2002, 43, 9039–
9042; b) J. T. Njardarson, C. Gaul, D. Shan, X.-Y. Huang, S. J.
Danishefsky, J. Am. Chem. Soc. 2004, 126, 1038–1040; c) C.
Gaul, J. T. Njardarson, D. Shan, D. C. Dorn, K.-D. Wu, W. P.
Tong, X.-Y. Huang, M. A. S. Moore, S. J. Danishefsky, J. Am.
Chem. Soc. 2004, 126, 11326–11337; d) D. Shan, L. Chen, J. T.
Njardarson, C. Gaul, X. Ma, S. J. Danishefsky, X.-Y. Huang,
Proc. Natl. Acad. Sci. USA 2005, 102, 3772–3776; e) V. S. Baba,
P. Das, K. Mukkanti, J. Iqbal, Tetrahedron Lett. 2006, 47,
6083–6086.
use of versatile reactions such as a syn,syn-stereoselective
crotylstannylation to control the stereogenic centers at C9
and C10, a crotyltitanation to control the stereogenic cen-
ters at C13 and C14, two ruthenium-catalyzed ring-closing
methatheses, one to control the (Z)-trisubstituted double
bond at C11–C12, one to establish the macrolactone core,
and a ruthenium-catalyzed cross-metathesis to install the
glutarimide side chain. These flexible synthetic methods
should allow access to a variety of migrastatin analogues
for biological evaluation.
Experimental Section
Selected analytical data for compounds 6, 14, and 1.
6: M.p. 110–115 °C. [α]2D0 = –49.8 (c = 0.46, CHCl3). 1H NMR
(400 MHz, CDCl3): δ = 7.68 (m, 4 H), 7.47–7.36 (m, 6 H), 6.60
(dd, J = 6.1 and 1.4 Hz, 1 H), 4.54 (dd, J = 7.6 and 1.4 Hz, 1 H),
3.84 (dd, J = 11.5 and 4.0 Hz, 1 H), 3.68 (dd, J = 11.5 and 4.0 Hz,
1 H), 3.41 (s, 3 H), 3.37 (dt, J = 8.0 and 4.0 Hz, 1 H), 2.42 (m, 1
H), 1.90 (s, 3 H), 1.05 (s, 9 H), 0.97 (d, J = 6.9 Hz, 3 H) ppm. 13C
NMR (100 MHz, CDCl3): δ = 165.8, 145.1, 135.8, 135.6, 133.2,
132.9, 129.9, 127.9, 127.8, 127.3 ppm. HRMS (ESI): calcd. for
C26H34O4SiNa [M + Na]+ 461.2124; found 461.2107.
[5] G. E. Keck, K. A. Savin, E. N. K. Cressman, D. E. Abbott, J.
Org. Chem. 1994, 59, 7889–7896.
[6] On the basis of the 1H NMR spectra of the crude reaction
mixture.
[7] Conversion was monitored by GC/MS. The catalyst [Ru]-I was
added in six portions over 144 h.
[8] The homodimer of diene 5 was also isolated in 5% yield.
[9] The corresponding saturated diol was also isolated in 10%
yield.
Eur. J. Org. Chem. 2006, 4800–4804
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4803