V. Gracias et al. / Tetrahedron Letters 47 (2006) 8873–8876
8875
Int. Ed. 2000, 39, 3168–3210; (b) Hulme, C.; Gore, V.
Curr. Med. Chem. 2003, 10, 51–80; (c) Do¨mling, A. Curr.
Opin. Chem. Biol. 2002, 6, 306–313; (d) Zhu, J. Eur. J.
CO2Me
NH2
MeO
MeO
CO2R
N
I
n
a
I
Org. Chem. 2003, 1133–1144; (e) Gokel, G.; Ludke, G.;
¨
n = 3
N
Ugi, I. In Isonitrile Chemistry; Ugi, I., Ed.; Academic:
New York, 1971; pp 145–199; (f) Do¨mling, A. Chem. Rev.
2006, 106, 17–89.
i
-Bu
SO2Tol
NC
OMe
MeO
b
O
Ph
2. Maraccini, S.; Torroba, T. In Multicomponent Reactions;
H
R = Me, 4
´
Zhu, J., Bienayme, H., Eds.; Wiley-VCH: Weinheim; 2005,
5
R = H,
Chapter 2.
3. (a) Gracias, V.; Gasiecki, A. F.; Djuric, S. W. Org. Lett.
2005, 7, 3183–3186; (b) Gracias, V.; Gasiecki, A. F.;
Djuric, S. W. Tetrahedron Lett. 2005, 46, 9049–9052; (c)
Gracias, V.; Darczak, D.; Gasiecki, A. F.; Djuric, S. W.
Tetrahedron Lett. 2005, 46, 9053–9056; (d) Beebe, X.;
Gracias, V.; Djuric, S. W. Tetrahedron Lett. 2006, 47,
3225–3228.
4. (a) van Leusen, A. M.; Wildeman, J.; Oldenzeil, O. H. J.
Org. Chem. 1977, 42, 1153–1159; (b) van Leusen, A. M.
Lect. Heterocycl. Chem. 1980, 5, S-111; (c) van leusen, D.;
van Leusen, A. Org. React. 2001, 57, 419–659; (d) Sisko,
J.; Kassick, A. J.; Mellinger, M.; Filan, J. J.; Allen, A.;
Olsen, M. A. J. Org. Chem. 2000, 65, 1516–1524.
MeO
Ph
i
-Bu
MeO
-Bu
N
N
+
c, d
N
MeO
MeO
COOMe
i
Ph
N
6
CO2Me
, 15%
40%
Scheme 2. Reagents and conditions: (a) DMF, K2CO3, 62%; (b)
LiOH, MeOH, 70%; (c) Pd(OAc)2, PPh3, CuI, Cs2CO3, DMF 140 ꢁC,
14 h, (method A); (d) TMSCHN2, MeOH.
5. (a) Arndsten, B. A.; Bergman, R. G.; Mobley, T. A.;
Peterson, T. H. Acc. Chem. Res. 1995, 28, 154–162; (b)
Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97, 2879–
2932; (c) Dyker, G. Angew. Chem. 1999, 111, 1808–1822;
Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698–1712; (d)
Gauri, Y.; Sabo-Etienne, S.; Chaudret, B. Eur. J. Inorg.
Chem. 1999, 1047–1055; (e) Kakiuchi, F.; Murai, S. Top.
Curr. Chem. 1999, 3, 47–77; (f) Kakiuchi, F.; Murai, S. In
Topics in Organometallic Chemistry; Murai, S., Ed.;
Springer-Verlag: Berlin-Heidelberg, 1999; Vol. 3; pp 47–
49; (g) Crabtree, R. H. J. Chem. Soc., Dalton Trans. 2001,
2437–2450; (h) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem.
Rev. 2002, 102, 1731–1769; (i) Kakiuchi, F.; Murai, S. Acc.
Chem. Res. 2002, 35, 826–834; (j) Tan, K. L.; Bergman, R.
G.; Ellman, J. A. J. Am. Chem. Soc. 2001, 123, 2685–2686;
(k) Bercaw, J. E.; Labinger, J. A. Nature 2002, 417, 507–
514; (l) Miura, M.; Nomura, M. Top. Curr. Chem. 2002,
219, 212–237; (m) Tan, K. L.; Vasudevan, A.; Bergman,
R. G.; Ellman, J. A.; Souers, A. J. Org. Lett. 2003, 5,
2131–2134; (n) Lane, B. S.; Brown, M. A.; Sames, D. J.
Am. Chem. Soc. 2005, 127, 8050–8057; (o) Deprez, N. R.;
Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem.
Soc. 2006, 128, 4972–4973; (p) Wilson, R. M.; Thalji, R.
K.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2006, 8,
1745–1747.
6. (a) Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.;
Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467–473; (b)
Kondo, Y.; Komine, T.; Sakamoto, T. Org. Lett. 2000, 2,
3111–3113; (c) Wang, L.; Woods, K. W.; Li, Q.; Barr, K.
J.; McCroskey, R. W.; Hannick, S. M.; Gherke, L.; Credo,
B. R.; Hui, Y.; Marsh, K.; Warner, R.; Lee, J. Y.;
Zielinski-Mozng, N.; Frost, D.; Rosenberg, S. H.; Sham,
H. L. J. Med. Chem. 2002, 45, 1697–1711; (d) Yokooji, A.;
Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. Tetra-
hedron 2003, 59, 5685–5689; (e) Mori, A.; Sekiguchi, A.;
Masui, K.; Shimada, T.; Horie, M.; Osakada, K.;
Kawamoto, M.; Ikeda, T. J. Am. Chem. Soc. 2003, 125,
1700–1701; (f) Zificsak, C. A.; Hlasta, D. J. Tetrahedron
2004, 60, 8991–9016; (g) Alagille, D.; Baldwin, R. M.;
Tamagnan, G. D. Tetrahedron Lett. 2005, 46, 1349–1351;
(h) Bellina, F.; Cauteruccio, S.; Mannina, L.; Rossi, R.;
Veil, S. J. Org. Chem. 2005, 70, 3997–4005.
we found that the C-arylation reaction was significantly
cleaner with the acid. Thus the ester was hydrolyzed to
the acid using LiOH/MeOH prior to the cyclization
reaction. The crude reaction mixture was then treated
with TMS–diazomethane to reform the ester in order
to ease purification of the final product.
Attempts to apply this chemistry to obtain the synthe-
tically more challenging eight-membered rings were suc-
cessful albeit, in a low yield. Compound 5 was subjected
to the reaction conditions employed in method A. In
addition to yielding the desired product 6 in a 15%
yield,12 significant deiodination of substrate 5 was
observed under the reaction conditions (Scheme 2).
In conclusion, a two-step reaction sequence utilizing the
van Leusen imidazole synthesis, followed by the intra-
molecular C–H activation allowing access to functional-
ized fused imidazoles, has been developed. This reaction
sequence utilizes readily available starting materials to
afford products in an efficient and concise manner. Fur-
thermore, the final products obtained are structural
chemotypes that could be useful scaffolds for lead gener-
ation. Other van Leusen post-modification reactions as
well as application of the C-arylation methodology to
other multicomponent reactions are currently in pro-
gress and will be reported in due course.
Acknowledgements
The authors would like to thank Dr. Rajesh Iyengar for
the purification of compound 6 and the Structural
Chemistry staff for NMR and MS data.
7. (a) Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.;
Ellman, J. A. Org. Lett. 2004, 6, 35–38; (b) Lewis, J. C.;
Wu, J. Y.; Bergman, R. G.; Ellman, J. A. Angew. Chem.,
Int. Ed. 2006, 45, 1589–1591.
References and notes
1. For reviews on Ugi 4-CC reaction and other MCRs with
isocyanides, see: (a) Do¨mling, A.; Ugi, I. Angew. Chem.,