V. Gracias et al. / Tetrahedron Letters 47 (2006) 8977–8980
8979
References and notes
1. Kornet, M. J.; Thio, A. P. J. Med. Chem. 1976, 19, 892–
898.
2. Nagy, T.; Jeannin, L.; Sapi, J.; Laronze, J. Y.; Renard, P.;
Pfeiffer, B.; Bizot-Espiard, J. G. Eur. J. Med. Chem. 1995,
30, 575–586.
3. Brown, D. W.; Mahon, M. F.; Ninan, A.; Sainsbury, M.
J. Chem. Soc., Perkin Trans. 1 1997, 2329–2336.
4. (a) Desai, M. C.; Vincent, L. A.; Rizzi, J. P. J. Med. Chem.
1994, 37, 4263–4266; (b) Boks, G. J.; Tollenaere, J. P.;
Kroon, J. Bioorg. Med. Chem. 1997, 5, 535–547; (c)
Kubota, H.; Okamoto, Y.; Fujii, M.; Ikeda, K.; Takeuchi,
M.; Shibanuma, T.; Isomura, Y. Bioorg. Med. Chem. Lett.
1998, 8, 1541–1546.
Scheme 2. Attempts toward five-membered systems.
5. Mehrotra, M. M.; Heath, J. A.; Rose, J. W.; Smyth, M. S.;
Seroogy, J.; Volkots, D. L.; Ruhter, G.; Schotten, T.;
Alaimo, L.; Park, G.; Pandey, A.; Scarborough, R. M.
Bioorg. Med. Chem. Lett. 2002, 12, 1103–1107.
6. (a) Zhu, J.; Quirion, J.-C.; Husson, H.-P. J. Org. Chem.
1993, 58, 6451–6456; (b) Zhu, J.; Quirion, J.-C.; Husson,
H.-P. Tetrahedron Lett. 1989, 30, 6323–6326; (c) Mokrosz,
M. J.; Duszynska, B.; Bojarski, A. J.; Mokrosz, J. L.
Bioorg. Med. Chem. 1995, 3, 533–538.
7. (a) Janssen, P. A. J. U.S. Patent 3,155,669, 1966; Chem.
Abstr. 1964 62, 9142; (b) Janssen, P. A. J. U.S. Patent
3,161,644, 1964; Chem. Abstr. 1964 63, 9952; (c) Janssen,
P. A. J. U.S. Patent 3,238,216, 1966; Chem. Abstr. 1966 65,
8922.
a, b, c
91%
N
N
N
Boc
Boc
Boc
Boc
N
N
H
COCF3
N
N
a, b, c
88%
N
H
COCF3
Boc
N
a, b, c
90%
´
`
8. (a) Compain, P.; Gore, J.; Vatele, J.-M. Tetrahedron 1996,
N
H
N
N
´
`
52, 6647–6664; (b) Compain, P.; Gore, J.; Vatele, J.-M.
Tetrahedron Lett. 1995, 36, 4063–4064; (c) Cossy, J.;
Poitevin, C.; Pardo, D. G.; Peglion, J.-L.; Dessinges, A.
Tetrahedron Lett. 1998, 39, 2965–2968; (d) Cossy, J.;
Poitevin, C.; Pardo, D. G.; Peglion, J.-L.; Dessinges, A.
J. Org. Chem. 1998, 63, 4554–4557; (e) Gemma, S.;
Campiani, G.; Butini, S.; Morelli, E.; Minetti, P.; Tinti,
O.; Nacci, V. Tetrahedron 2002, 58, 3689–3692; (f) Genin,
M. J.; Gleason, W. B.; Johnson, R. L. J. Org. Chem. 1993,
58, 860–866; (g) Montenegra, G.; Fontela, A. G.
J. Heterocycl. Chem. 2001, 38, 837–842; (h) Hedley,
S. J.; Moran, W. J.; Price, D. A.; Harrity, J. P. A.
J. Org. Chem. 2003, 68, 4286–4292.
Boc
COCF3
Scheme 3. Reagents and conditions: (a) TFAA, pyridine; (b) 1 mol %
(ImesH2)(PCy3)(Cl)2Ru@CHPh; (c) H2 Pd/C, MeOH, 60 psi.
As an extension of this chemistry, a series of trifluoro-
acetate-protected RCM adducts were subjected to
hydrogenation conditions to provide the corresponding,
fully saturated spirocyclic framework in excellent yield
(Scheme 3).
9. (a) Do¨mling, A. Chem. Rev. 2006, 106, 17–89;
(b) Maraccini, S.; Torroba, T. In Multicomponent Reac-
In conclusion, we have developed a two-step reaction
sequence using a one-pot a-aminoallylation reaction
followed by the RCM reaction to make a diverse
collection of spirocyclic diamines. The reaction sequence
uses readily available starting materials to afford prod-
ucts in an efficient and concise process. The use of amino
ketones in the a-aminoallylation reaction represents a
valuable extension of this chemistry. The final products
represent structural chemotypes that are useful scaffolds
for lead generation. The diversification of this diamine
collection is currently under way and will be reported
in due course.
´
tions; Zhu, J., Bienayme, H., Eds.; Wiley-VCH: Weinheim,
2005.
10. (a) Sugiura, M.; Mori, C.; Kobayashi, S. J. Am. Chem.
Soc. 2006, 128, 11038–11039; (b) Sugiura, M.; Hirano, K.;
Kobayashi J. Am. Chem. Soc. 2004, 126, 7182–7183, and
references cited therein.
11. Wright, D. L.; Schulte, J. P., ii; Page, M. A. Org. Lett.
2000, 2, 1847–2850; Also for the synthesis of oxa-aza
spirocycles by the addition of allyl magnesium bromide to
ketones, followed by etherification and RCM, see Walters,
M. A.; La, F.; Deshmukh, P.; Omecinsky, D. O. J. Comb.
Chem. 2002, 4, 125–130.
12. See; Ref. 10 (a) Fu, G. C.; Nguyen, S.-B. T.; Gruggs, R. H.
J. Am. Chem. Soc. 1993, 115, 9856–9857; (b) Gracias, V.;
Gasiecki, A. F.; Djuric, S. W. Org. Lett. 2005, 7, 3183–
3186; (c) Gracias, V.; Gasiecki, A. F.; Djuric, S. W.
Tetrahedron Lett. 2005, 46, 9049–9052.
Acknowledgements
13. A representative procedure is demonstrated by the prep-
aration of tert-butyl 1,8-diazaspiro[5.5]undec-3-ene-8-carb-
oxylate (4). 1-N-Boc-3-piperidone 1 (500 mg, 2.5 mmol),
allylamine (0.94 mL, 12.5 mmol) and boronic ester 2
(420 mg, 2.5 mmol) were heated in toluene (5 mL) at
The authors would like to thank Bryan Macri and
Bhadra Shelat of the high-pressure catalysis lab for
assistance with the olefin reductions, and the structural
chemistry group for NMR and MS measurements.
J.D.M. would like to thank Abbott Laboratories for
the opportunity of a summer internship position.
˚
80 °C with 4 A sieves (850 mg) for 8 h. The reaction
mixture was cooled, filtered through a pad of celite. The