Angewandte
Chemie
[8] For fluorous tagging in solid-phase a-peptide syntheses, see:
In summary, we have demonstrated the use of a silicon-
based microreactor for the effective synthesis of peptides. The
microstructured reaction device allowed for the detailed
investigation and optimization of reaction parameters by
using minimal amounts of reagents. Furthermore, it opened
the way for the use of unprecedented high reaction temper-
atures, leading to homogeneous reaction mixtures and of
significantly reduced reaction times. Synthesis efficiency was
further enhanced by the use of a fluorous benzyl tag that was
applied for the first time in the assembly of b-peptides and
proved to be particularly useful for the purification of poorly
soluble products.[8] Not only will the synthetic strategy
outlined herein find applications in the construction of
challenging peptides, it will also be applied to the assembly
of other biopolymers, including oligosaccharides and oligo-
nucleotides. In general, the continuous-flow process opens
many opportunities for multistep syntheses and automa-
tion.[21]
a) D. V. Filippov, D. J. van Zoelen, S. P. Oldfield, G. A. van der
Marel, H. S. Overkleeft, J. W. Drijfhout, J. H. van Boom, Tetra-
hedron Lett. 2002, 43, 7809 – 7812; b) P. C. de Visser, M. van
Helden, D. V. Filippov, G. A. van der Marel, J. W. Drijfhout,
J. H. van Boom, D. Noort, H. S. Overkleeft, Tetrahedron Lett.
2003, 44, 9013 – 9016.
[9] For a-peptide synthesis on a fluorous support, see: M. Mizuno,
K. Goto, T. Miura, T. Matsuura, T. Inazu, Tetrahedron Lett. 2004,
45, 3425 – 3428.
[10] D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder,
K. F. Jensen, P. H. Seeberger, Chem. Commun. 2005, 5, 578 – 580.
[11] L. A. Carpino, M. Beyermann, H. Wenschuh, M. Bienert, Acc.
Chem. Res. 1996, 29, 268 – 274.
[12] Longer reaction times (30 min) led to an irregular flow as judged
from the large error margin in the relative LC–MS UV
absorbances of the products and the internal standard.
[13] Tetramers were also observed (data not shown).
[14] a) D. P. Curran, Synlett 2001, 1488 – 1496; b) W. Zhang, Chem.
Rev. 2004, 104, 2531 – 2556.
[15] The poor solubility dictated the use of a relatively large amount
of DMF (30 mgmLÀ1) to apply it to the fluorous silica column
(Fluorchrom, 20 g). The large amount of DMF did not adversely
affect the purification. Also see the Supporting information.
[16] The low solubility of the product prohibited lower temperatures
and longer reaction times in the microreactor.
[17] a) For this condensation, a ca. 93:7 mixture of enantiomers (R)-
13b/(S)-13b was used, see [17b]. LC–MS analysis of the product
revealed the same diastereomer ratio in the product, indicating
that no epimerization had occurred under these reaction
conditions. A more detailed epimerization study is currently
underway. b) For the synthesis of amino acid fluoride 13, a 93:7
diasteromeric mixture of Boc-b2-homovaline (R/S = 93:7) was
used: T. Hinterman; D. Seebach, Helv. Chim. Acta 1998, 81,
2093.
[18] Synthesis of Peptides and Peptidomimetics (Houben-Weyl Meth-
ods of Organic Synthesis), Vol. E22a (Hrsg.: M. Goodman, A.
Felix, L. Moroder, C. Toniolo), Georg Thieme, Stuttgart, 2002,
pp. 665 – 877.
Received: May 31, 2006
Published online: September 29, 2006
Keywords: b-peptides · fluorous tags · microreactors ·
.
synthetic methods
[1] a) D. Seebach, A. K. Beck, D. J. Bierbaum, Chem. Biodiversity
2004, 1, 1111 – 1239; b) R. P. Cheng, S. H. Gellman, W. F.
DeGrado, Chem. Rev. 2001, 101, 3219 – 3232; c) D. Seebach,
M. Overhand, F. N. M. Kühnle, B. Martinoni, L. Oberer, U.
Hommel, H. Widmer, Helv. Chim. Acta 1996, 79, 913 – 941; d) D.
Seebach, J. V. Schreiber, P. I. Arvidsson, J. Frackenpohl, Helv.
Chim. Acta 2001, 84, 271 – 279; e) T. Kimmerlin, D. Seebach, J.
Pept. Res. 2005, 65, 229 – 260; f) D. Seebach, S. Abele, K.
Gademan, B. Jaun, Angew. Chem. 1999, 111, 1700 – 1703; Angew.
Chem. Int. Ed. 1999, 38, 1595 – 1597.
[2] a) J. K. Murray, S. H. Gellman, Org. Lett. 2005, 7, 1517 – 1520;
b) G. Lelais, D. Seebach, B. Jaun, R. I. Mathad, O. Flögel, F.
Rossi, M. Campo, A. Wortmann, Helv. Chim. Acta 2006, 89,
361 – 403; c) P. I. Arvidsson, J. Frackenpohl, D. Seebach, Helv.
Chim. Acta 2003, 86, 1522 – 1553.
[19] For detailed experimental conditions, see the Supporting
Information.
[20] Only the major diastereomer was collected.
[21] I. R. Baxendale, J. Deeley, C. M. Griffiths-Jones, S. V. Ley, S.
Saaby, G. K. Tranmer, Chem. Commun. 2006, 24, 2566.
[3] M. ErdØlyi, A. Gogoll, Synthesis 2002, 1592 – 1596.
[4] a) W. Ehrfeld, V. Hessel, H. Löwe, Microreactors: New Tech-
nologyfor Modern Chemistry , Wiley-VCH, Weinheim, 2000;
b) K. F. Jensen, Chem. Eng. Sci. 2001, 56, 293 – 303; c) K.
Jähnisch, V. Hessel, H. Löwe, M. Baerns, Angew. Chem. 2004,
116, 410 – 451; Angew. Chem. Int. Ed. 2004, 43, 406 – 446.
[5] a) P. D. I. Fletcher, S. J. Haswell, E. Pombo-Villar, B. H. War-
rington, P. Watts, S. Y. F. Wong, X. L. Zhang, Tetrahedron 2002,
58, 4735 – 4757; b) P. Watts, S. J. Haswell, Chem. Soc. Rev. 2005,
34, 235 – 246; c) M. Brivio, W. Verboom, D. N. Reinhoudt, Lab
Chip 2006, 6, 329 – 344; d) K. Geyer, J. D. C. CodØe, P. H.
Seeberger, Chem. Eur. J., in press.
[6] For couplings of b-peptides in an electro-osmotic flow driven
glass microreactor, see: a) P. Watts, C. Wiles, S. J. Haswell, E.
Pombo-Villar, P. Styring, Chem. Commun. 2001, 990 – 991; b) P.
Watts, C. Wiles, S. J. Haswell, E. Pombo-Villar, Lab Chip 2002,
141 – 144; c) P. Watts, C. Wiles, S. J. Haswell, E. Pombo-Villar,
Tetrahedron 2002, 58, 5427 – 5439. Although these papers report
on the formation of b-peptides, no synthetically useful amounts
were procured.
[7] a) D. P. Curran, Z. Y. Luo, J. Am. Chem. Soc. 1999, 121, 9069 –
9072; b) W. Zhang, Curr. Opin. Drug DiscoveryDev. 2004, 7,
784 – 797.
Angew. Chem. Int. Ed. 2006, 45, 7000 –7003
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim