5112
R. W. Van De Water et al. / Tetrahedron Letters 44 (2003) 5109–5113
7. (a) Solomon, M.; Jamison, W. C. L.; McCormick, M.;
only trace amounts of the alcohol 14 present. However,
Liotta, D.; Cherry, D. A.; Mills, J. E.; Shah, R. D.;
Rodgers, J. D.; Maryanoff, C. A. J. Am. Chem. Soc.
1988, 110, 3702–3704; (b) Stern, A. J.; Rohde, J. J.;
Swenton, J. S. J. Org. Chem. 1989, 54, 4413–4419.
8. (a) Schultz, A. G.; Harrington, R. E. J. Org. Chem. 1991,
56, 6391–6394; (b) Schultz, A. G.; Harrington, R. E.;
Holoboski, M. A. J. Org. Chem. 1992, 57, 2973–2976; (c)
Whiting, D. A. In Comprehesive Organic Synthesis; Trost,
B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991;
Vol. 3, Chapter 3.5, pp. 803–820; (d) Uno, H.; Yayama,
A.; Suzuki, H. Tetrahedron 1992, 48, 8353–8368; (e)
Nishinga, A.; Itahara, T.; Matsuura, T.; Berger, S.;
Henes, G.; Rieker, A. Chem. Ber. 1976, 109, 1530–1548.
9. (a) Genisson, Y.; Tyler, P. C.; Young, R. N. J. Am.
Chem. Soc. 1994, 116, 759–760; (b) Carreno, M. C.;
Gonzalez, M. P.; Fischer, J. Tetrahedron Lett. 1995, 36,
4893–4896.
10. (a) Van De Water, R. W.; Magdziak, D. J.; Chau, J. N.;
Pettus, T. R. R. J. Am. Chem. Soc. 2000, 122, 6502–6503;
(b) Jones, R.; Van De Water, R. W.; Lindsey, C.; Hoa-
rau, C.; Ung, T.; Pettus, T. R. R. J. Org. Chem. 2001, 66,
3435–3441.
11. Additional studies detailing (a) the selection of this par-
ticular amide tether, (b) substitiution patterns around the
aromatic ring, and (c) enantioselective lactonizations are
forthcoming.
upon chromatography significant amounts of 14 are
isolated.
20. Wipf, P.; Kim, Y. J. Am. Chem. Soc. 1994, 116, 11678–
11688.
21. Experimental data:
1
Compound 2: H NMR (CDCl3, 400 MHz) l 7.36–7.28
(br s, 1-OH), 6.98 (d, J=8.0 Hz, 1H), 6.54 (d, J=2.4 Hz,
1H), 6.44 (dd, J=8.0, 2.4 Hz, 1H), 4.63 (s, 2H), 3.55 (q,
J=7.2 Hz, 4H), 2.58 (q, J=7.5 Hz, 2H), 1.98–1.90 (m,
2H), 1.88–1.80 (m, 2H), 1.16 (t, J=7.5 Hz, 3H) ppm.
Compound 3: 1H NMR (CDCl3, 400 MHz) l 6.66 (d,
J=10.1 Hz, 1H), 6.27 (dd, J=10.1, 1.4 Hz, 1H), 5.87 (d,
J=1.4 Hz, 1H), 4.93 (d, J=17.9 Hz, 1H), 4.81 (d,
J=17.9 Hz, 1H), 2.20–2.00 (m, 2H), 0.93 (t, J=7.5 Hz,
3H) ppm.
Compound 4: 1H NMR (CDCl3, 400 MHz) l 6.65 (d,
J=10.1 Hz, 1H), 6.38 (dd, J=10.1, 1.7 Hz, 1H), 5.57 (d,
J=1.7 Hz, 1H), 4.65 (d, J=14.5 Hz, 1H), 4.55 (d,
J=14.5 Hz, 1H), 3.52 (t, J=6.9 Hz, 2H), 3.40–3.35 (m,
2H), 2.22–2.15 (m, 1H), 2.05–1.85 (m, 5H), 1.25 (br s,
1-OH), 0.95 (t, J=7.5 Hz, 3H) ppm.
Compound 5: 1H NMR (CDCl3, 400 MHz) l 10.98 (s,
1-OH), 7.89 (s, 1H), 6.43 (s, 1H), 4.73 (s, 2H), 3.55 (t,
J=6.9 Hz, 2H), 3.48 (t, J=6.8 Hz, 2H), 2.65 (dq, J=7.5,
0.6 Hz, 2H), 2.05–2.00 (m, 2H), 1.95–1.87 (m, 2H), 1.23
(t, J=7.5 Hz, 3H) ppm.
Compound 6: 1H NMR (CDCl3, 400 MHz) l 7.74 (d,
J=8.3 Hz, 2H), 7.33 (d, J=8.3 Hz, 2H), 6.45 (s, 1H),
6.42 (s, 1H), 6.35 (br s, 1-OH), 4.55 (s, 2H), 3.55–3.45 (m,
4H), 2.48–2.42 (m, 2H), 2.45 (s, 3H), 2.04–1.85 (m, 4H),
0.97 (t, J=7.5 Hz, 3H) ppm.
12. (a) Tamura, Y.; Yakura, T.; Haruta, J.; Kita, Y. J. Org.
Chem. 1987, 52, 3927–3930; (b) Wipf, P.; Kim, Y.; Fritch,
P. C. J. Org. Chem. 1993, 58, 7195–7203.
13. Jurd, L. Tetrahedron 1977, 33, 163–168.
14. (a) Angle, S. R.; Arnaiz, D. O.; Boyce, J. P.; Frutos, R.
P.; Louie, M. S.; Mattson-Arnaiz, H. L.; Rainier, J. D.;
Turnbull, K. D.; Yang, W. J. Org. Chem. 1994, 59,
6322–6337; (b) Hyatt, J. A. J. Org. Chem. 1983, 48,
129–131.
15. For a review of thallium oxidants, see: Ferraz, H. M. C.;
Silva, L. F., Jr.; Vieira, T. O. Synthesis 1999, 2001–2023.
16. In the crude reaction mixture compound 6 was found to
be the minor product, formed in a 1:2 ratio with a
cyclohexadienone which we were unable to isolate. How-
ever, due to the relatively high yield of 6, we believe the
cylcohexadienone to be compound i which can undergo a
[3,3]-sigmatropic rearrangement and tautomerization
thereby producing 6 upon chromatography.
Compound 7: 1H NMR (CDCl3, 400 MHz) l 6.38 (t,
J=1.7 Hz, 1H), 5.52 (s, 1H), 4.57 (s, 2H), 3.55 (t, J=6.9
Hz, 2H), 3.42 (t, J=6.8 Hz, 2H), 2.45 (dq, J=7.3, 1.7
Hz, 2H), 2.11 (s, 6H), 2.03–1.85 (m, 4H), 1.13 (t, J=7.3
Hz, 3H) ppm.
Compound 8: 1H NMR (CDCl3, 400 MHz) l 6.53 (d,
J=10.1 Hz, 1H), 6.27 (dd, J=10.1, 1.6 Hz, 1H), 5.50 (d,
1.7 Hz, 1H), 4.55 (d, J=14.0 Hz), 4.50 (d, J=14.0 Hz,
1H), 3.54–3.51 (m, 2H), 3.40–3.35 (m, 2H), 2.15–1.87 (m,
6H), 2.09 (s, 3H), 0.90 (t, J=7.5 Hz, 3H) ppm.
Compound 9: 1H NMR (CDCl3, 400 MHz) l 6.27 (t,
J=1.6 Hz, 1H), 5.64 (s, 1H), 4.67 (s, 2H), 3.55 (t, J=6.9
Hz, 2H), 3.42 (t, J=6.7 Hz, 2H), 2.60 (dq, J=7.3, 1.8
Hz, 2H), 2.08–2.04 (m, 2H), 1.23 (t, J=7.2 Hz, 3H) ppm.
Compound 10: 1H NMR (CDCl3, 400 MHz) l 6.50 (d,
J=10.1 Hz, 1H), 6.31 (dd, J=10.1, 1.8 Hz, 1H), 5.51 (d,
J=1.8 Hz, 1H), 4.62 (d, J=14.5 Hz, 1H), 4.57 (d,
J=14.5 Hz, 1H), 4.41 (t, J=6.6 Hz, 2H), 3.58–3.49 (m,
3H), 3.45–3.39 (m, 2H), 3.38–3.32 (m, 1H), 2.12–2.00 (m,
3H), 1.94–1.79 (m, 5H), 1.70–1.62 (m, 2H), 0.79 (t, J=7.7
Hz, 3H) ppm.
17. Magdziak, D.; Rodriguez, A. A.; Van De Water, R. W.;
Pettus, T. R. R. Org. Lett. 2002, 4, 285–288.
1
Compound 11: H NMR (CDCl3, 400 MHz) l 6.53 (dd,
18. (a) Kita, Y.; Takada, T.; Ibaraki, M.; Gyoten, M.;
Mihara, S.; Fujita, S.; Tohma, H. J. Org. Chem. 1996, 61,
223–227; (b) Kita, Y.; Arisawa, M.; Gyoten, M.; Naka-
jima, M.; Hamada, R.; Tohma, H.; Takada, T. J. Org.
Chem. 1998, 63, 6623–6625.
J=10.1, 1.4 Hz, 1H), 6.39 (dd, J=10.1, 1.7 Hz, 1H), 5.53
(d, J=1.7 Hz, 1H), 4.62 (d, J=14.7 Hz, 1H), 4.50 (d,
J=14.7 Hz, 1H), 4.39 (septet, J=5.9 Hz, 1H), 3.53 (t,
J=7.0 Hz, 2H), 3.42 (t, J=7.1 Hz, 2H), 2.39–2.28 (m,
1H), 2.09–1.86 (m, 5H), 0.91 (t, J=7.6, 3H) ppm.
1
19. The alcohol 14 is thought to result from the hydrolysis of
the trifluoroacetate ester of 15 during chromatography.
In entries 12–14, the trifluoroacetate ester 15 is present in
Compound 12: H NMR (CDCl3, 400 MHz) l 7.99 (dd,
J=8.0, 1.1 Hz, 1H), 7.43 (td, J=7.5, 1.1 Hz, 1H), 7.33
(dd, J=7.5, 1.8 Hz, 1H), 7.08 (ddd, J=8.0, 7.5, 1.8 Hz,
1H), 6.88 (s, 1H), 6.51 (s, 1H), 4.90 (br s, 1-OH), 4.66 (s,
1
significant quantities in the crude H NMR spectra with