DOI: 10.1039/C5CC03134F
Page 5 of 5
ChemComm
Concepción and A. Corma, J. Catal., 2014, 311, 339; (e) X. Liu, H. Q.
Li, S. Ye, Y. M. Liu, H. Y. He and Y. Cao, Angew. Chem. Int. Ed.,
2014, 53, 7624.
(a) Y. Yürüm, Hydrogen Energy System, Kluwer Academic Publishers,
Dordrecht, 1994, 16. (b) J. J. Romm, The Hype about Hydrogen,
Island Press, Washington DC, 2004, 72.
(a) I. Ojima, Chem. Rev., 1988, 88, 1011. (b) A. M. Tafesh and J.
Weiguny, Chem. Rev., 1996, 96, 2035; (c) G. Kiss, Chem. Rev., 2001,
101, 3435. (d) X. F. Wu, H. Neumann and M. Beller, Chem. Rev., 2013,
113, 1. (e) X. F. Wu, H. Neumann and M. Beller, ChemSusChem, 2013,
6, 229.
3) A systematic study of the influence of the support surface
areas in the Au/CeO2-based materials showed an excellent
correlation between the oxygen storage capacity (OSC) and
corresponding activity for selective 3a deoxygenation (Figure
S7), thus underscoring the importance of the greater surface
oxygen mobility in facilitating the crucial CO-induced reduct-
ive coupling via a redox-mediated pathway.
6
7
5
In conclusion, we have successfully developed a facile and
efficient gold-catalyzed approach for the synthesis of aromatic
10 azo compounds directly from reductive coupling of the corresp-
onding nitroarenes by using CO as the sole reductant. The reac-
tion is very mild, general, scalable, and tolerant of various
functionalities. This reductive coupling method, using a robust
and reusable gold catalyst with inexpensive and abundatly
15 available CO as the appealing reductant under mild conditions,
can make a significant contribution not only to reveal the syn-
thetic potential of supported gold catalysts but also to establish
a more benign and industrially viable process.
8
(a) V. I. Manov-Yuvenskii and B.K. Nefedov, Russ. Chem. Rev., 1981,
50, 470; (b) D. Chusov and B. List, Angew. Chem. Int. Ed., 2014, 53,
5199; (c) P. N. Kolesnikov, D. L. Usanov, E. A. Barablina, V. I.
Maleev and D. Chusov, Org. Lett., 2014, 16, 5068; (d) P. N.
Kolesnikov, N. Z. Yagafarov, D. L. Usanov, V. I. Maleev and D.
Chusov, Org. Lett., 2015, 17, 173.
9
B. P. Bhardwaj, Steel and Iron Handbook; NPCS, New Delhi, 2014.
10 It is pertinent to point out that the use of CO on industrial scale may be
justified on its huge abundance and inherent cost-effectiveness, altho-
ugh a laboratory scale utilization of CO may have several disadvanta-
ges such as flammability, price and toxicity with respect to H2 gas.
11 (a) R. M. Laine and E. J. Crawford, J. Mol. Catal., 1988, 44, 357; (b) L.
He, L. C. Wang, H. Sun, J. Ni, Y. Cao, H. Y. He and K. N. Fan, Angew.
Chem., Int. Ed., 2009, 48, 9538; (c) L. He, F. J. Yu, X. B. Lou, Y. Cao,
H. Y. He and K. N. Fan, Chem. Commun., 2010, 46, 1553; (d) Y.
Mikami, A. Noujima, T. Mitsudome, T. Mizugaki, K. Jitsukawa and K.
Kaneda, Tetrahedron Lett., 2010, 51, 5466; (e) J. Ni, L. He, Y. M. Liu,
Y. Cao, H. Y. He and K. N. Fan, Chem. Commun., 2011, 47, 812; (f) J.
Huang, L. Yu, L. He, Y. M. Liu, Y. Cao and K. N. Fan, Green Chem.,
2011, 13, 2672; (g) S. S. Li, X. Liu, Y. M. Liu, H. Y. He, K. N. Fan and
Y. Cao, Chem. Commun., 2014, 50, 5626.
Financial support from the National Natural Science Found-
20 ation of China (21273044, 21473035), Research Fund for the
Doctoral Program of Higher Education (20120071110011) and
Science & Technology Commission of Shanghai Municipality
(08DZ2270500 and 12ZR1401500) is greatly appreciated.
Notes and references
25 Department of Chemistry, Shanghai Key Laboratory of Molecular
Catalysis and Innovative Materials, Collaborative Innovation Center of
Chemistry for Energy Materials, Fudan University, Shanghai 200433, P. R.
† Electronic Supplementary Information (ESI) available: Chemicals and
30 materials, catalyst characterization, catalyst preparation and activity test.
See DOI: 10.1039/b000000x/
12 G. D. Buckley and N. H. Ray, J. Chem. Soc., 1949, 1154.
13 J. E. Kmiecik, J. Org. Chem., 1965, 30, 2014.
14 (a) B. K. Min and C. M. Friend, Chem. Rev., 2007, 107, 2709; (b) C. D.
Pina, E. Falletta, L. Prati and M. Rossi, Chem. Soc. Rev., 2008, 37,
2077; (c) A. Corma and H. Garcia, Chem. Soc. Rev., 2008, 37, 2096; (d)
Y. Zhang, X. Cui, F. Shi, and Y. Deng, Chem. Rev., 2012, 112, 2467;
(e) M. Stratakis, and H. Garcia, Chem. Rev., 2012, 112, 4469; (f) X.
Liu, L. He, Y. M. Liu and Y. Cao, Acc. Chem. Res., 2014, 47, 793.
15 M. Makosch, J. Sá, C. Kartusch, G. Richner, J. A. van Bokhoven and K.
Hungerbühler, ChemCatChem, 2012, 4, 59.
1
(a) R. G. Anderson and G. Nickless, Analyst, 1967, 92, 207; (b) P. N. D.
Ashutosh and J. K. Mehrotra, Colourage, 1979, 26, 25; (c) R. D. Athey
Jr., Eur. Coat. J., 1998, 3, 146; (d) C. S. Sheppard, Encycl. Polym. Sci.
Eng. 1985, 2, 143; (e) J. R. S. Hoult, Drugs, 1986, 32, 18; (g) W. J.
Sandborn, Am. J. Gastroenterol., 2002, 97, 2939; (f) K. Hunger,
Industrial Dyes: Chemistry, Properties, Applications, Wiley-VCH,
Weinheim, 2003.
16 Note that anilines as well as self-coupling azo and azoxy derivatives
were also detected as by-products in the resultant mixture.
17 (a) D. Andreeva, V. Idakiev, T. Tabakova, L. llieva, P. Falaras, A.
Bourlinos and A. Travlos, Catal. Today, 2002, 72, 51; (b) Q. Fu, S.
Kudriavtseva, H. Saltsburg and M. Flytzani-Stephanopoulos, Chem.
Eng. J., 2003, 93, 41; (c) Q. Fu, H. Saltsburg and M.
Flytzani-Stephanopoulos, Science, 2003, 301, 935; (d) D. Widmann, R.
Leppelt and R. J. Behm, J. Catal., 2007, 251, 437; (e) L. C. Wang, M.
T. Khazaneh, D. Widmann and R. J. Behm, J. Catal., 2013, 302, 20.
18 P. Zuman and B. Shah, Chem. Rev. 1994, 94, 1621.
19 It is important to note that the reductive intermediate, nitrosobenzene,
has not been detected, presumably due to the strong interaction of this
compound and the catalyst surface. Indeed, when nitrosobenzene was
used as the substrate, the reaction rate was significantly retarded. See
ESI† for details.
2
(a) T. Ikeda and O. Tsutsumi, Science, 1995, 268, 1873; (b) H.
Murakami, A. Kawabuchi, K. Kotoo, M. Kutinake and N. Nakashima,
J. Am. Chem. Soc., 1997, 119, 7605; (c) J. C. Crano and R.
Guglielmetti, Organic Photochromic and Thermochromic Compounds,
Plenum Press, New York, 1999; (d) B. L. Feringa, R. A. Van Delden,
N. Koumura and E. M. Geertsema, Chem. Rev. , 2000, 100, 1789; (e) I.
A. Banerjee, L. Yu and H. Matsui, J. Am. Chem. Soc., 2003,125, 6542;
(f) F. Cisnetti, R. Ballardini, A. Credi, M. T. Gandolfi, S. Masiero,F.
Negri, S. Pieraccini and G. P. Spada, Chem. Eur. J., 2004, 10, 2011; (g)
A. Jain, Y. Gupta and S. K. Jain, Crit. Rev. Ther. Drug Carrier Syst.,
2006, 23, 349; (h) Y. Zhao and T. Ikeda, Smart Light-Responsive
Materials: Azobenzene-Containing Polymers and Liquid Crystals,
John Wiley, Hoboken, 2009.
3
4
E. Merino, Chem. Soc. Rev., 2011, 40, 3835.
(a) C. Zhang and N. Jiao, Angew. Chem. Int. Ed., 2010, 49, 6174; (b) S.
Cai, H. Rong, X. Yu, X. Liu, D. Wang, W. He and Y. Li, ACS Catal.,
2013, 3, 478; (c) J. Wang, J. He, C. Zhi, B. Luo, X. Li, Y. Pan, X. Cao
and H. Gu, RSC Adv., 2014, 4, 16607; (d) S. Kumari, A. Shekhar and
D. D . Pathak, RSC Adv., 2014, 4, 61187; (e) A. Grirrane, A. Corma
and H. García, Science, 2008, 322, 1661.
5
(a) L. Hu, X. Cao, L. Shi, F. Qi, Z. Guo, J. Lu and H. Gu, Org. Lett.,
2011, 13, 5640; (b) L. Hu, X. Cao, L. Chen, J. Zheng, J. Lu, X. Sun and
H. Gu, Chem. Commun., 2012, 48, 3445; (c) J. Wang, L. Hu, X. Cao, J.
Lu, X. Li and H. Gu, RSC Adv., 2013, 3, 4899; (d) D. Combita, P.
4
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]