6022
P. Rajakumar et al. / Bioorg. Med. Chem. Lett. 16 (2006) 6019–6023
9. Ranganathan, D.; Haridas, V.; Nagaraj, R.; Karle, I. L.
J. Org. Chem. 2000, 65, 4415.
Activity ð% prevention of lysisÞ
OD of drug treated sample
10. Eun, J. J.; Soo, Y. S. Bull. Korean Chem. Soc. 2002, 23,
1483.
¼ 100 ꢀ
ꢁ 100
OD of control
11. Cheng, S.-K.; Van Ergen, D.; Fan, E.; Hamilton, A. D.
J. Am. Chem. Soc. 1991, 113, 7640.
12. (a) Jhaumeer-Laulloo, B. S.; Witvrouw, M. Indian J.
Chem. 2000, B, 842; (b) Jhaumeer-Laulloo, B. S. Asian J.
Chem. 2000, 12, 775.
13. Sulekh, C.; Sangeetika, T.; Shalini, T. Transition Met.
Chem. 2004, 29, 925.
14. Cheng, C.-C.; Rokito, S. E.; Burrows, C. J. Angew. Chem.,
Int. Ed. Engl. 1993, 32, 277.
The lysosomal enzymes released during inflammation
produce a variety of disorders. This extracellular activity
of these enzymes is related to acute or chronic inflamma-
tion. Since the HRBC membranes are similar to lyso-
somal membrane components, the prevention of
hypotonicity induced HRBC membrane lysis is taken
as a measure of anti-inflammatory activity of drug.
15. Halit, K.; Guelsev, D.; Yasar, G.; Uemmuehan, O.; Riza,
A. Transition Met. Chem. 2003, 28, 51.
16. Du, C.-J. F.; Hart, H.; Ng, K. K. D. J. Org. Chem. 1986,
51, 3162.
17. Harada, T.; Takayama, M.; Oohashi, H.; Koike, W.;
Yazawa, C. Jpn. Kokai Tokkyo Koho 80 33,348; Chem.
Abstr. 1980, 93, p96593q).
18. Rajakumar, P.; Rasheed, A. M. A. Tetrahedron 2005, 61,
5351.
The degree of anti-inflammatory activity in cyclo-
phane amide 15 at 50 lg/ml was found to be
82.43%, whereas that of the reference drug predniso-
lone, at the same concentration, was 59.34%. The
activity of cyclophane amide 15 was found to be more
than that of prednisolone which clearly shows that
cyclophane amide 15 is superior to the reference drug
prednisolone. Though the degree of anti-inflammatory
activity in cyclophane amide 18 at 50 lg/ml was
52.27% which is some what nearer to the reference
drug prednisolone, at 100 lg/ml it was only 56.04%
which indicates that cyclophane amide 18 is inferior
to prednisolone. Cyclophane amides 16, 17, 19, and
20 did not show much activity. The results are sum-
marized in Table 1.
19. A solution of the diacid chloride 14 (0.5 mmol) in dry
chloroform (100 mL) and a solution of the diamine 1
(0.5 mmol) and triethylamine (1.1 mmol) in dry chloro-
form (100 mL) were added simultaneously dropwise to
chloroform (500 mL) with vigorous stirring during 6 h.
After the addition was complete, the reaction mixture
was stirred for another 6 h. The solvent was removed at
reduced pressure and the residue obtained was then
dissolved in chloroform (300 mL), washed with water
(2· 100 mL) to remove triethylamine hydrochloride and
then dried over magnesium sulphate. Removal of the
chloroform gave the cyclophane 15 as a crude material,
which was purified by column chromatography (SiO2)
using hexane/chloroform (1:1) as eluting agent to give
pure cyclophane amide 15 as a violet crystalline solid.
Yield: 50%; Rf 0.66 (toluene/ethyl acetate, 9:1); mp: 234–
236 ꢁC; IR (KBr, cmꢀ1) 3379, 1662, 1508; 1H NMR
(400 MHz, CDCl3) d 2.16 (s, 6H), 3.95 (s, 4H), 4.80 (s,
4H), 6.75–8.58 (m, 26H), 9.68 (s, 2H); 13C NMR
(100.4 MHz, CDCl3) d 19.4, 41.9, 67.9, 113.7, 121.1,
121.2, 123.9, 123.9, 124.4, 126.6, 128.2, 128.5, 129.8,
130.4, 130.5, 135.6, 136.1, 137.3, 138.7, 140.7, 156.3,
164.0; FAB Mass spectrum: m/z 798 (M+); Elemental
analysis calcd for C50H42N2O4S2: C, 75.18; H, 5.26; N,
3.50. Found: C, 75.35; H, 5.32; N, 3.61.
Cyclophane amides 15–20 were synthesized by the acyl-
ation of the corresponding diamines with acid chloride
14. Cyclophane amides 15–20 showed a dose-dependent
effect in HRBC membrane stabilization. Anti-inflamma-
tory activity was more in cyclophane amide 15 than the
cyclophane amides 16–20.
Acknowledgments
The authors thank CSIR, New Delhi, for financial assis-
tance, UGC SAP, for providing facility to the Depart-
ment, SAIF, IIT, Chennai, for NMR spectra and
RSIC, CDRI, Lucknow, for FAB MS.
20. Cyclophane amide 16. White solid. Eluent for column
chromatography: chloroform to chloroform/methanol
(99:1); yield: 45%; Rf 0.54 (chloroform/methanol, 9:1);
mp: 280–283 ꢁC; IR (KBr, cmꢀ1) 3280, 1672, 1581, 1517;
1H NMR (400 MHz, DMSO-d6) d 2.08 (s, 6H), 3.38 (s,
4H), 5.62 (s, 4H), 7.10–8.29 (m, 22H), 9.47(s, 2H), 10.52 (s,
2H); 13C NMR (100.4 MHz, DMSO-d6) d 19.0, 40.1, 68.2,
113.5, 120.9, 122.2, 122.6, 124.8, 125.5, 127.9, 130.3, 131.2,
131.6, 132.0, 133.0, 135.9, 138.0, 155.7, 163.4, 166.7; FAB
Mass spectrum: m/z 808 (M+); Elemental analysis calcd for
C46H40N4O6S2: C, 68.31; H, 4.95; N, 6.93. Found: C,
68.42; H, 5.12; N, 6.84.
21. Cyclophane amide 17. Beige crystalline solid. Eluent for
column chromatography: hexane to hexane/chloroform
(1:1); yield: 35%; Rf 0.45 (toluene/ethyl acetate, 9:1); mp:
150–154 ꢁC; IR (KBr, cmꢀ1) 3280, 1662, 1581, 1517; 1H
NMR (400 MHz, CDCl3) d 1.94 (s, 6H), 4.03 (s, 4H), 5.05
(s, 4H), 6.75–8.43 (m, 30H), 9.73 (s, 2H); 13C NMR
(100.4 MHz, CDCl3) d 19.3, 41.5, 68.1, 114.3, 121.4, 121.9,
123.9, 124.5, 125.4, 126.8, 127.4, 128.7, 128.8, 128.9, 129.3,
130.4, 130.8, 132.7, 134.6, 136.5, 137.2, 140.0, 140.2, 140.9,
156.4, 163.9; FAB Mass spectrum: m/z 874 (M+); Elemen-
References and notes
1. Hosseini, M. W.; Lehn, J. M.; Duff, S. R.; Gu, K.; Mertes,
M. P. J. Org. Chem. 1987, 52, 1662.
2. Dobler, M.. In Comprehensive Supramolecular Chemistry;
Gokul, G. W., Ed.; Pergamon: New York, 1996; Vol. 1, p
267.
3. Bradshaw, J. S.; Izatt, R. M.; Bordunov, A. V.; Zhu, C.
Y.; Hathway, J. K.. In Comprehensive Supramolecular
Chemistry; Gokel, G. W., Ed.; Pergamon: New York,
1996; Vol. 1, p 35.
4. Sprengard, U.; Schudok, M.; Schmidt, W.; Kretzschmar,
G.; Kunz, H. Angew. Chem., Int. Ed. Engl. 1996, 35, 321.
5. Karle, I. L.; Ranganathan, D.; Haridas, V. J. Am. Chem.
Soc. 1996, 118, 10916.
6. Kataoka, H.; Katagi, T. Tetrahedron 1987, 43, 4519.
7. Karle, I. L.; Ranganathan, D.; Kurur, S. J. Am. Chem.
Soc. 1999, 121, 7156.
8. Karle, I. L.; Ranganathan, D.; Haridas, V. J. Am. Chem.
Soc. 1998, 120, 6903.