Organic Letters
Letter
functionalization of C(sp3)−H bond. Org. Lett. 2014, 16, 3032−
Notes
3035. (c) Sahoo, S. K. A comparative study of Cu(II)-assisted vs
The authors declare no competing financial interest.
̊
̊
Cu(II)-free chalcogenation on benzyl and 2/3-cycloalkyl moieties. J.
Chem. Sci. 2015, 127, 2151−2157.
ACKNOWLEDGMENTS
(11) Wu, X.; Wang, Y. Metal-free S-methylation of diaryl disulfides
with di-tert-butyl peroxide. Tetrahedron Lett. 2018, 59, 1240−1243.
(12) (a) C−C Bond Activation; Dong, G., Ed.; Springer Verlag:
Berlin/Heidelberg, 2014. (b) Nairoukh, Z.; Cormier, M.; Marek, I.
Merging C−H and C−C bond cleavage in organic synthesis. Nat. Rev.
Chem. 2017, 1, 1−16. (c) Morcillo, S. P. Radical-promoted C−C
bond cleavage: A deconstructive approach for selective functionaliza-
tion. Angew. Chem. 2019, 58, 2−13.
■
Financial support for this study was provided by the NIH
(R01GM071779). A.J.S. thanks the Majeti−Alapati fellowship
for funding. We thank the UCLA Molecular Instrumentation
Center for the NMR spectroscopy and mass spectrometry
instrumentation and for the X-ray diffraction studies (S. I.
Khan).
(13) (a) Gui, J.; Wang, D.; Tian, W. Biomimetic synthesis of 5,6-
dihydro-glaucogenin C: Construction of the disecopregnane skeleton
by iron(II)-promoted fragmentation of an α-alkoxy hydroperoxide.
Angew. Chem., Int. Ed. 2011, 50, 7093−7096. (b) Schuppe, A. W.;
Newhouse, T. R. Assembly of the limonoid architecture by a divergent
approach: Total synthesis of ( )-andirolide N via ( )-8α-
hydroxycarapin. J. Am. Chem. Soc. 2017, 139, 631−634. (c) Manoni,
F.; Rumo, C.; Li, L.; Harran, P. G. Unconventional fragment usage
enables a concise total synthesis of (−)-callyspongiolide. J. Am. Chem.
REFERENCES
■
(1) (a) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Sulfur containing
scaffolds in drugs: Synthesis and application in medicinal chemistry.
Curr. Top. Med. Chem. 2016, 16, 1200−1216. (b) Scott, K. A.;
Njardarson, J. T. Analysis of US FDA-approved drugs containing
sulfur atoms. Top. Curr. Chem. 2019, 376, 1−34.
(2) (a) Block, E. Organic sulfur compounds in organic synthesis. J.
Chem. Educ. 1971, 48, 814−824. (b) Patai, S. The Chemistry of
Functional GroupsThe Chemistry of the Thiol Group; Wiley: London,
1974. (c) Block, E. Reactions of Organosulfur Compounds; Blomquist,
A. T., Wasserman, H. H., Eds.; Academic Press: New York, 1978.
(d) Jones, D. N. Comprehensive Organic Chemistry; Barton, D. J., Ollis,
D. W., Eds.; Pergamon: New York, 1979; Vol. 3. (e) Metzner, P.;
Thuillier, A. Sulfur Reagents in Organic Synthesis; Katritzky, A. R.,
Meth-Cohn, O., Rees, C. W., Eds.; Academic Press: San Diego, CA,
1994. (f) Cremlyn, R. J. An Introduction to Organosulfur Chemistry;
Wiley: New York, 1996. (g) Clayden, J.; MacLellan, P. Asymmetric
synthesis of tertiary thiols and thioethers. Beilstein J. Org. Chem. 2011,
7, 582−595. (h) Eichman, C. C.; Stambuli, J. P. Transition metal
catalyzed synthesis of aryl sulfides. Molecules 2011, 16, 590−608.
̈
Soc. 2018, 140, 1280−1284. (d) Roque, J. B.; Kuroda, Y.; Gottemann,
L. T.; Sarpong, R. Deconstructive diversification of cyclic amines.
Nature 2018, 564, 244−248. (e) Smaligo, A. J.; Swain, M.; Quintana,
J. C.; Tan, M. F.; Kim, D. A.; Kwon, O. Hydrodealkenylative C(sp3)−
C(sp2) bond fragmentation. Science 2019, 364, 681−685.
(14) (a) Schreiber, S. L.; Liew, W.-F. Criegee rearrangement of α-
alkoxy hydroperoxides. A synthesis of esters and lactones that
complements the Baeyer−Villiger oxidation of ketones. Tetrahedron
Lett. 1983, 24, 2363−2366. (b) Sato, T.; Oikawa, T.; Kobayashi, K.
Metal-catalyzed organic photoreactions. Iron(III) chloride catalyzed
photooxidation of cyclic olefins and its application to the synthesis of
exo-brevicomin. J. Org. Chem. 1985, 50, 1646−1651. (c) Bao, J.; Tian,
H.; Yang, P.; Deng, J.; Gui, J. Modular Synthesis of Functionalized
Butenolides by Oxidative Furan Fragmentation. 2019, chem-
́
̀
(3) (a) Denes, F.; Schiesser, C. H.; Renaud, P. Thiols, thioethers,
and related compounds as sources of C-centered radicals. Chem. Soc.
́
̀
Rev. 2013, 42, 7900−7942. (b) Denes, F.; Pichowicz, M.; Povie, G.;
Renaud, P. Thiyl radicals in organic synthesis. Chem. Rev. 2014, 114,
2587−2693.
(4) Brown, H. C.; Midland, M. M. Facile photochemical or oxygen
initiated free-radical chain reactions of trialkylboranes with organic
disulfides. Convenient new synthesis of organic sulfides via hydro-
boration. J. Am. Chem. Soc. 1971, 93, 3291−3293.
(5) (a) Russell, G. A.; Tashtoush, H. Free-radical chain-substitution
reactions of alkylmercury halides. J. Am. Chem. Soc. 1983, 105, 1398−
1399. (b) Russell, G. A.; Ngoviwatchai, P.; Tashtoush, H. I.; Pla-
Dalmau, A.; Khanna, R. K. Reactions of alkylmercurials with
heteratom-centered acceptor radicals. J. Am. Chem. Soc. 1988, 110,
3530−3538.
(6) Barton, D. H. R.; Bridon, D.; Zard, S. Z. New decarboxylative
chalcogenation of aliphatic and alicyclic carboxylic acids. Tetrahedron
Lett. 1984, 25, 5777−5780.
(7) (a) Patel, V. F.; Pattenden, G. Radical reactions in synthesis.
Homolysis of alkyl cobalt salophens in the presence of radical trapping
agents. Tetrahedron Lett. 1987, 28, 1451−1454. (b) Branchaud, B. P.;
Meier, M. S.; Malekzadeh, M. N. New synthetic methods via free
radicals. Free-radical generation via photolytic hemolysis of
alkylcobaloxime carbon-cobalt bonds. Efficient radical trapping with
useful functional groups. J. Org. Chem. 1987, 52, 212−217.
(8) Russell, G. A.; Ngoviwatchai, P.; Tashtoush, H.; Hershberger, J.
Reaction of 1-alkenyl and 1-alkynl derivatives of tin and mercury with
hetero-centered radicals. Organometallics 1987, 6, 1414−1419.
(9) Wang, P.-F.; Wang, X.-Q.; Dai, J.-J.; Feng, Y.-S.; Xu, H.-J. Silver-
mediated decarboxylative C−S cross-coupling of aliphatic carboxylic
acids under mild conditions. Org. Lett. 2014, 16, 4586−4589.
(10) (a) Zhao, J.; Fang, H.; Han, J.; Pan, Y.; Li, G. Metal-free
preparation of cycloalkyl aryl sulfides via di-tert-butyl peroxide-
promoted oxidative C(sp3)−H bond thiolation of cycloalkanes. Adv.
Synth. Catal. 2014, 356, 2719−2724. (b) Du, B.; Jin, B.; Sun, P.
Syntheses of sulfides and selenides through direct oxidative
(15) Ertl, P.; Schuhmann, T. A systematic cheminformatics analysis
of functional groups occurring in natural products. J. Nat. Prod. 2019,
82, 1258−1263.
(16) (a) Hawkins, E. G. E. Reactions of organic peroxides. Part VII.
Reaction of 1-hydroxycycloalkyl hydroperoxides with ferrous
compounds. J. Chem. Soc. 1955, 3463−3467. (b) Kumamoto, J.; De
La Mare, H. E.; Rust, F. F. The use of cupric and ferric chlorides in
the trapping of radical intermediates and the synthesis of alkyl
chlorides. J. Am. Chem. Soc. 1960, 82, 1935−1939. (c) De La Mare,
H. E.; Kochi, J. K.; Rust, F. F. The oxidation of free radicals by metal
ions. J. Am. Chem. Soc. 1961, 83, 2013. (d) Murai, S.; Sonoda, N.;
Tsutsumi, S. The redox reaction of 1-ethoxy-n-heptyl hydroperoxide.
Bull. Chem. Soc. Jpn. 1964, 37, 1187−1190. (e) Schreiber, S. L.
Fragmentation reactions of α-alkoxy hydroperoxides and application
to the synthesis of the macrolide ( )-recifeiolide. J. Am. Chem. Soc.
1980, 102, 6163−6165. (f) Huang, D.; Schuppe, A. W.; Liang, M. Z.;
Newhouse, T. R. Scalable procedure for the fragmentation of
hydroperoxides mediated by copper and iron tetrafluoroborate salts.
Org. Biomol. Chem. 2016, 14, 6197−6200. (g) Fisher, T. J.; Dussault,
P. H. Alkene ozonolysis. Tetrahedron. Tetrahedron 2017, 73, 4233−
4258.
(17) Criegee, R.; Wenner, G. Die ozonisierung des 9,10-oktalins.
Justus Liebig Ann. Chem. 1949, 564, 9−15.
(18) (a) Denmark, S. E.; Cresswell, A. J. Iron-catalyzed cross-
coupling of unactivated secondary alkyl thio ethers and sulfones with
aryl Grignard reagents. J. Org. Chem. 2013, 78, 12593−12628.
(b) Merchant, R. R.; Edwards, J. T.; Qin, T.; Kruszyk, M. M.; Bi, C.;
Che, G.; Bao, D.-H.; Qiao, W.; Sun, L.; Collins, M. R.; Fadeyi, O. O.;
Gallego, G. M.; Mousseau, J. J.; Nuhant, P.; Baran, P. S. Modular
radical cross-coupling with sulfones enables access to sp3-rich
(fluoro)alkylated scaffolds. Science 2018, 360, 75−80. (c) Hughes, J.
E
Org. Lett. XXXX, XXX, XXX−XXX