Organic Letters
ORCID
Letter
2005, 7, 3283−3285. (d) Sakata, Y.; Yasui, E.; Takatori, K.; Suzuki,
Y.; Mizukami, M.; Nagumo, S. Syntheses of Polycyclic Tetrahy-
drofurans by Cascade Reactions Consisting of Five-Membered Ring
Selective Prins Cyclization and Friedel−Crafts Cyclization. J. Org.
Chem. 2018, 83, 9103−9118. Selected applications of the Prins
reaction in THP synthesis: (e) Kopecky, D. J.; Rychnovsky, S. D.
Mukaiyama Aldol−Prins Cyclization Cascade Reaction: A Formal
Total Synthesis of Leucascandrolide A. J. Am. Chem. Soc. 2001, 123,
8420−8421. (f) Crosby, S. R.; Harding, J. R.; King, C. D.; Parker, G.
D.; Willis, C. L. Oxonia-Cope Rearrangement and Side-Chain
Exchange in the Prins Cyclization. Org. Lett. 2002, 4, 577−580.
(g) Crosby, S. R.; Harding, J. R.; King, C. D.; Parker, G. D.; Willis, C.
L. Prins Cyclizations: Labeling Studies and Application to Natural
Product Synthesis. Org. Lett. 2002, 4, 3407−3410. (h) Yadav, V. K.;
Vijaya Kumar, N. Highly Stereoselective Prins Cyclization of
Silylmethyl-Substituted Cyclopropyl Carbinols to 2,4,6-Trisubstituted
Tetrahydropyrans. J. Am. Chem. Soc. 2004, 126, 8652−8653. (i) Van
Orden, L. J.; Patterson, B. D.; Rychnovsky, S. D. Total synthesis of
leucascandrolide A: A new application of the Mukaiyama aldol-Prins
reaction. J. Org. Chem. 2007, 72, 5784−5793. (j) Jacolot, M.; Jean,
M.; Levoin, N.; van de Weghe, P. The Prins reaction using ketones:
rationalization and application toward the synthesis of the portentol
skeleton. Org. Lett. 2012, 14, 58−61. (k) Breugst, M.; Gree, R.; Houk,
K. N. Synergistic effects between Lewis and Bronsted acids:
application to the Prins cyclization. J. Org. Chem. 2013, 78, 9892−
9897. (l) Li, L.; Sun, X.; He, Y.; Gao, L.; Song, Z. TMSBr/InBr3-
promoted Prins cyclization/homobromination of dienyl alcohol with
aldehyde to construct cis-THP containing an exocyclic E-alkene.
Chem. Commun. 2015, 51, 14925−14928. (m) Donnelly, B. L.; Elliott,
L. D.; Willis, C. L.; Booker-Milburn, K. I. Sequential Photochemical
and Prins Reactions for the Diastereoselective Synthesis of Tricyclic
Scaffolds. Angew. Chem., Int. Ed. 2019, 58, 9095−9098 and ref 2 .
(4) Lalli, C.; van de Weghe, P. Enantioselective Prins cyclization:
BINOL-derived phosphoric acid and CuCl synergistic catalysis. Chem.
Commun. 2014, 50, 7495−7498 For substrate-controlled asymmetric
Prins cyclization, see ref 2 .
(5) For mechanistic studies, see: (a) Alder, R. W.; Harvey, J. N.;
Oakley, M. T. Aromatic 4-Tetrahydropyranyl and 4-Quinuclidinyl
Cations. Linking Prins with Cope and Grob. J. Am. Chem. Soc. 2002,
124, 4960−4961. (b) Marumoto, S.; Jaber, J. J.; Vitale, J. P.;
Rychnovsky, S. D. Synthesis of (−)-Centrolobine by Prins
Cyclizations that Avoid Racemization. Org. Lett. 2002, 4, 3919−
3922. (c) Barry, C. S.; Bushby, N.; Harding, J. R.; Hughes, R. A.;
Parker, G. D.; Roe, R.; Willis, C. L. Probing the mechanism of Prins
cyclisations and application to the synthesis of 4-hydroxytetrahy-
dropyrans. Chem. Commun. 2005, 3727−3729. (d) Jasti, R.;
Anderson, C. D.; Rychnovsky, S. D. Utilization of an Oxonia-Cope
Rearrangement as a Mechanistic Probe for Prins Cyclizations. J. Am.
Chem. Soc. 2005, 127, 9939−9945. (e) Jasti, R.; Rychnovsky, S. D.
Racemization in Prins Cyclization Reactions. J. Am. Chem. Soc. 2006,
128, 13640−13648.
Author Contributions
§H.-R.S. and Q.Z. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Natural Science Foundation of China
(NSFC 21672170, 21602172, 21203148), Natural Science
Basic Research Plan in Shaanxi Province of China (2018JC-
020, 2018JM2029), and China Postdoctoral Science Founda-
tion (2018M643705) for financial support. Q.Z. thanks the
Fundamental Research Funds for the Central Universities.
REFERENCES
■
(1) (a) Pastor, I. M.; Yus, M. The Prins Reaction: Advances and
Applications. Curr. Org. Chem. 2007, 11, 925−957. (b) Olier, C.;
Kaafarani, M.; Gastaldi, S.; Bertrand, M. P. Synthesis of tetrahy-
dropyrans and related heterocycles via Prins cyclization: extension to
aza-Prins cyclization. Tetrahedron 2010, 66, 413−455. (c) Pastor, I.
M.; Yus, M. Focused Update on the Prins Reaction and the Prins
Cyclization. Curr. Org. Chem. 2012, 16, 1277−1312. (d) Doro, F.;
Akeroyd, N.; Schiet, F.; Narula, A. The Prins Reaction in the
Fragrance Industry: 100th Anniversary (1919−2019). Angew. Chem.,
Int. Ed. 2019, 58, 7174−7179.
(2) (a) Overman, L. E.; Pennington, L. D. Strategic Use of Pinacol-
Terminated Prins Cyclizations in Target-Oriented Total Synthesis. J.
Org. Chem. 2003, 68, 7143−7157. (b) Hanessian, S.; Tremblay, M.;
Petersen, J. F. W. The-Acyloxyiminium Ion Aza-Prins Route to
Octahydroindoles: Total Synthesis and Structural Confirmation of the
Antithrombotic Marine Natural Product Oscillarin. J. Am. Chem. Soc.
2004, 126, 6064−6071. (c) Wender, P. A.; Dechristopher, B. A.;
Schrier, A. J. Efficient Synthetic Access to a New Family of Highly
Potent Bryostatin Analogues via a Prins-Driven Macrocyclization
Strategy. J. Am. Chem. Soc. 2008, 130, 6658−6659. (d) Bahnck, K. B.;
Rychnovsky, S. D. Formal Synthesis of (−)-Kendomycin Featuring a
Prins-Cyclization To Construct the Macrocycle. J. Am. Chem. Soc.
2008, 130, 13177−13181. (e) Kanoh, N.; Sakanishi, K.; Iimori, E.;
Nishimura, K. i.; Iwabuchi, Y. Asymmetric Total Synthesis of
(−)-Scabronine G via Intramolecular Double Michael Reaction and
Prins Cyclization. Org. Lett. 2011, 13, 2864−2867. (f) Ma, D.; Zhong,
Z.; Liu, Z.; Zhang, M.; Xu, S.; Xu, D.; Song, D.; Xie, X.; She, X.
Protecting-Group-Free Total Synthesis of (−)-Lycopodine via
Phosphoric Acid Promoted Alkyne Aza-Prins Cyclization. Org. Lett.
2016, 18, 4328−4331. (g) Abas, H.; Linsdall, S. M.; Mamboury, M.;
Rzepa, H. S.; Spivey, A. C. Total Synthesis of (+)-Lophirone H and
Its Pentamethyl Ether Utilizing an Oxonium−Prins Cyclization. Org.
Lett. 2017, 19, 2486−2489. (h) Gan, P.; Pitzen, J.; Qu, P.; Snyder, S.
A. Total Synthesis of the Caged Indole Alkaloid Arboridinine Enabled
by aza-Prins and Metal-Mediated Cyclizations. J. Am. Chem. Soc.
2018, 140, 919−925.
(3) Selected applications of the Prins reaction in THF synthesis:
(a) Loh, T.-P.; Hu, Q.-Y.; Ma, L.-T. Formation of Tetrahydrofuran
from Homoallylic Alcohol via a Tandem Sequence: 2-Oxonia [3,3]-
Sigmatropic Rearrangement/Cyclization Catalyzed by In(OTf)3. J.
Am. Chem. Soc. 2001, 123, 2450−2451. (b) Loh, T.-P.; Hu, Q.-Y.;
Tan, K.-T.; Cheng, H.-S. Diverse Cyclization Catalyzed by In(OTf)3
for the Convergent Assembly of Substituted Tetrahydrofurans and
Tetrahydropyrans. Org. Lett. 2001, 3, 2669−2672. (c) Shin, C.;
Chavre, S. N.; Pae, A. N.; Cha, J. H.; Koh, H. Y.; Chang, M. H.; Choi,
J. H.; Cho, Y. S. Highly stereoselective synthesis of 2,5-disubstituted
3-vinylidene tetetrahydrofurans via Prins-type cyclization. Org. Lett.
(6) (a) Liu, L.; Kaib, P. S.; Tap, A.; List, B. A General Catalytic
Asymmetric Prins Cyclization. J. Am. Chem. Soc. 2016, 138, 10822−
10825. (b) Tsui, G. C.; Liu, L.; List, B. The organocatalytic
asymmetric Prins cyclization. Angew. Chem., Int. Ed. 2015, 54, 7703−
7706. (c) Xie, Y.; Cheng, G. J.; Lee, S.; Kaib, P. S.; Thiel, W.; List, B.
Catalytic Asymmetric Vinylogous Prins Cyclization: A Highly
Diastereo- and Enantioselective Entry to Tetrahydrofurans. J. Am.
Chem. Soc. 2016, 138, 14538−14541.
(7) Xie, Y.; List, B. Catalytic Asymmetric Intramolecular [4 + 2]
Cycloaddition of In Situ Generated ortho-Quinone Methides. Angew.
Chem., Int. Ed. 2017, 56, 4936−4940.
(8) For selected reviews on o-QMs, see: (a) Amouri, H.; Le Bras, J.
Taming Reactive Phenol Tautomers and o-Quinone Methides with
Transition Metals: A Structure−Reactivity Relationship. Acc. Chem.
Res. 2002, 35, 501−510. (b) Van de Water, R. W.; Pettus, T. R. R. o-
Quinone methides: intermediates underdeveloped and underutilized
in organic synthesis. Tetrahedron 2002, 58, 5367−5405. (c) Quinone
Methides; Rokita, S. E., Ed.; Wiley: Hoboken, NJ, 2009. (d) Willis, N.
E
Org. Lett. XXXX, XXX, XXX−XXX