Communications
[3] a) M. Yamaguchi in Comprehensive Asymmetric Catalysis, Vol.3
(Eds.: E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer,
Berlin, 1999, chap. 31.2; b) M. Yamaguchi in Comprehensive
Asymmetric Catalysis Supplement 1 (Eds.: E. N. Jacobsen, A.
Pfaltz, H. Yamamoto), Springer, Berlin, 2004, p. 151; c) R.
Ballini, G. Bosica, D. Fiorini, A. Palmieri, M. Petrini, Chem.Rev.
2005, 105, 933.
alkenes and the corresponding 1,3-dinitro compounds were
obtained in high yield with excellent diastereo- and enantio-
selectivities by employing 2 mol% of 2b (entries 5 and 6,
Table 2). Aliphatic nitroalkenes also appeared to be good
acceptors, further expanding the generality of the substrates
(entries 7 and 8, Table 2). The present method was applicable
to other silyl nitronates derived from simple nitroalkanes,
where eminent catalytic activity and a high level of stereo-
selectivity were attained (entries 9 and 10, Table 2).
The resulting 1,3-dinitro compounds with two consecutive
stereochemically defined stereocenters can be readily con-
verted into the corresponding 1,3-diamines, which are versa-
tile chiral building blocks from synthetic as well as pharma-
ceutical viewpoints.[10] For example, exposure of a mixture of
7a in THF to a hydrogen atmosphere in the presence of a
catalytic amount of Raney Nickel at 458C for 36 h resulted in
the formation of 11 in 75% yield with complete preservation
of the stereochemical integrity (Scheme 2).[11]
[4] For
a fewexamples of non-stereoselective reactions, see:
a) M. D. Alcµntara, F. C. Escribano, A. Gómez-Sµnchez, M. J.
Diµnez, M. D. Estrada, A. López-Castro, S. PØrez-Garrido,
Synthesis 1996, 64; b) R. Ballini, G. Bosica, D. Fiorini, A.
Palmieri, Synthesis 2004, 1938.
[5] S.-F. Lu, D.-M. Du, J. Xu, S.-W. Zhang, J.Am.Chem.Soc. 2006,
128, 7418.
[6] For an account of chiral ammonium fluoride catalysis, see: T.
Ooi, K. Maruoka, Acc.Chem.Res. 2004, 37, 526.
[7] a) T. Ooi, K. Doda, K. Maruoka, J.Am.Chem.Soc. 2003, 125,
2054; b) T. Ooi, K. Doda, K. Maruoka, J.Am.Chem.Soc. 2003,
125, 9022; c) T. Ooi, K. Doda, S. Takada, K. Maruoka,
Tetrahedron Lett. 2006, 47, 145.
[8] When the reaction was quenched with an excess amount of D2O,
approximately 60% of deuterium incorporation was observed at
the C1 methylene center of syn-7a, thereby suggesting the
intervention of a silyl nitronate intermediate of type 10. We
assume that the lowdeuterium incorporation could be ascribed
to the high susceptibility of the silyl nitronate, generated in situ,
to protonation from a small amount of water or methanol.
[9] Although 1.2 equiv of silyl nitronate 6 seemed to be sufficient,
we decided to use 2 equiv of 6 at 0.04m substrate concentration
for further investigations to constantly attain excellent yields.
[10] For selected examples, see: a) C. F. Bigge, J.-P. Wu, J. T.
Drummond, Bioorg.Med.Chem.Lett. 1992, 2, 207; b) G. H. P.
Roos, A. R. Donovan, Tetrahedron: Asymmetry 1999, 10, 991;
Scheme 2. Derivatization of 1,3-dinitroalkane syn-7a into the corre-
sponding 1,3-diamine syn-11.
c) S. E. Denmark, J.-H. Kim, Can.J.Chem.
2000, 78, 673;
d) M. M. Kabat, Tetrahedron Lett. 2001, 42, 7521; e) F. Cohen,
L. E. Overman, J.Am.Chem.Soc. 2001, 123, 10782.
[11] The ee value of syn-11 was confirmed by HPLC analysis after
derivatization to the corresponding cyclic thiourea. See the
Supporting Information.
In conclusion, we have achieved an efficient, highly
diastereo- and enantioselective formal conjugate addition of
nitroalkanes to nitroalkenes by the catalysis with the novel
chiral quaternary ammonium bifluoride 2b in combination
with silyl nitronates. This strategy greatly expands the use of
conjugate addition chemistry involving organonitro com-
pounds and provides a reliable route to optically active 1,3-
dinitro compounds, which are synthetically useful intermedi-
ates for a wide range of valuable 1,3-difunctionalized organic
molecules.
Received: July 13, 2006
Published online: October 18, 2006
Keywords: 1,3-dinitro compounds · asymmetric catalysis ·
.
À
C C coupling · conjugate addition · homogeneous catalysis
[1] a) N. Ono, The Nitro Group in Organic Synthesis, Wiley-VCH,
NewYork, 2001, chaps. 4 and 6; for a recent example of facile
transformations of optically active organonitro compounds, see:
b) C. Czekelius, E. M. Carreira, Angew.Chem. 2005, 117, 618;
Angew.Chem.Int.Ed. 2005, 44, 612.
[2] a) O. M. Berner, L. Tedeschi, D. Enders, Eur.J.Org.Chem. 2002,
1877; for recent examples, see: b) D. J. Dixon, R. D. Richardson,
Synlett 2006, 81; c) S. B. Tsogoeva, S. Wei, Chem.Commun. 2006,
1451; d) M. Terada, H. Ube, Y. Yaguchi, J.Am.Chem.Soc. 2006,
128, 1454; e) P. J. Nichols, J. A. DeMattei, B. R. Barnett, N. A.
LeFur, T.-H. Chuang, A. D. Piscopio, K. Koch, Org.Lett. 2006, 8,
1495; f) H. Huang, E. N. Jacobsen, J.Am.Chem.Soc. 2006, 128,
7170, and references therein.
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 7606 –7608