10.1002/ejoc.202000438
European Journal of Organic Chemistry
COMMUNICATION
[4]
[5]
a) E. Podyacheva, O. I. Afanasyev, A. A. Tsygankov, M. Makarova,
D. Chusov, Synthesis 2019, 51, 2667–2677; b) N. Z. Yagafarov, P.
N. Kolesnikov, D. L. Usanov, V. V Novikov, Y. V Nelyubina, D.
Chusov, Chem. Commun. 2016, 52, 1397–1400; c) S. K. Aavula, A.
Chikkulapalli, N. Hanumanthappa, I. Jyothi, C. H. Vinod Kumar, S.
G. Manjunatha, Tetrahedron Lett. 2013, 54, 5690–5694.
a) F. Ferretti, D. R. Ramadan, F. Ragaini, ChemCatChem 2019, 11,
4450–4488; b) F. Ferretti, D. Formenti, F. Ragaini, Rend. Lincei
2017, 28, 97–115; c) F. Ragaini, S. Cenini, E. Gallo, A. Caselli, S.
Fantauzzi, Curr. Org. Chem. 2006, 10, 1479–1510; d) M. A. EL-
Atawy, F. Ferretti, F. Ragaini, European J. Org. Chem. 2018, 2018,
4818–4825; e) F. Ferretti, E. Barraco, C. Gatti, D. R. Ramadan, F.
Ragaini, J. Catal. 2019, 369, 257–266; f) F. Ragaini, in Ref. Modul.
Chem. Mol. Sci. Chem. Eng., Elsevier, 2016.
[6]
[7]
A. Ambrosi, S. E. Denmark, Angew. Chemie Int. Ed. 2016, 55,
12164–12189.
Scheme 7. General trends in catalyst performance for the nucleophiles with
different nucleophilicity.
a) S. E. Denmark, Z. D. Matesich, S. T. Nguyen, S. Milicevic
Sephton, J. Org. Chem. 2018, 83, 23–48; b) S. E. Denmark, Z. D.
Matesich, J. Org. Chem. 2014, 79, 5970–5986; c) S. E. Denmark, S.
T. Nguyen, Org. Lett. 2009, 11, 781–784; d) M.-M. Zhu, L. Tao, Q.
Zhang, J. Dong, Y.-M. Liu, H.-Y. He, Y. Cao, Green Chem. 2017,
19, 3880–3887; e) J. Dong, M. Zhu, G. Zhang, Y. Liu, Y. Cao, S.
Liu, Y. Wang, Chinese J. Catal. 2016, 37, 1669–1675; f) J. W. Park,
Y. K. Chung, ACS Catal. 2015, 5, 4846–4850; g) P. Zhou, C. Yu, L.
Jiang, K. Lv, Z. Zhang, J. Catal. 2017, 352, 264–273.
S. E. Denmark, M. Y. S. Ibrahim, A. Ambrosi, ACS Catal. 2017, 7,
613–630.
a) D. Chusov, B. List, Angew. Chemie Int. Ed. 2014, 53, 5199–5201;
b) A. A. Tsygankov, M. Makarova, D. Chusov, Mendeleev Commun.
2018, 28, 113–122.
a) O. I. Afanasyev, A. A. Tsygankov, D. L. Usanov, D. S. Perekalin,
N. V Shvydkiy, V. I. Maleev, A. R. Kudinov, D. Chusov, ACS Catal.
2016, 6, 2043–2046; b) P. N. Kolesnikov, N. Z. Yagafarov, D. L.
Usanov, V. I. Maleev, D. Chusov, Org. Lett. 2015, 17, 173–175.
a) P. N. Kolesnikov, D. L. Usanov, K. M. Muratov, D. Chusov, Org.
Lett. 2017, 19, 5657–5660; b) N. Z. Yagafarov, K. Muratov, K.
Biriukov, D. Usanov, O. Chusova, D. S. Perekalin, D. Chusov,
European J. Org. Chem. 2018, 2018, 557–563; c) A. A. Tsygankov,
M. Makarova, O. I. Afanasyev, A. S. Kashin, A. V Naumkin, D. A.
Loginov, D. Chusov, ChemCatChem 2020, 12, 112–117.
S. A. Runikhina, D. L. Usanov, A. O. Chizhov, D. Chusov, Org. Lett.
2018, 20, 7856–7859.
S. A. Runikhina, O. I. Afanasyev, K. Biriukov, D. S. Perekalin, M.
Klussmann, D. Chusov, Chem. – A Eur. J. 2019, 25, 16225–16229.
S. A. Runikhina, M. A. Arsenov, V. B. Kharitonov, E. R.
Sovdagarova, O. Chusova, Y. V Nelyubina, G. L. Denisov, D. L.
Usanov, D. Chusov, D. A. Loginov, J. Organomet. Chem. 2018,
867, 106–112.
Experimental section
General procedure for esterification: A glass vial in a 10 mL
stainless steel autoclave was charged with 1 mol% of the catalyst,
the corresponding solvent, 500 mol% of the carboxylic acid, 500
mol% of water and 100 mol% of the aldehyde. The autoclave was
sealed, flushed with 10 atm of CO, and charged with 30 bar of CO.
The reactor was placed into a preheated oil bath. After the
indicated time, the reactor was cooled to room temperature and
depressurized. Metal residues were removed by flash
chromatography on silica gel using dichloromethane as an eluent
to get NMR yield. Isolation of pure product was achieved by
chromatography.
[8]
[9]
[10]
[11]
[12]
[13]
[14]
Acknowledgements
The work was financially supported by the Russian Science
Foundation (grant # 16-13-10393). NMR studies were performed
with the financial support from the Ministry of Science and Higher
Education of the Russian Federation using the equipment of the
Center for molecular composition studies of INEOS RAS.
Keywords: reductive esterification • carbon monoxide •
reduction • ester synthesis • reductive addition
[1]
a) B. M. Trost, Science 1991, 254, 1471–1477; b) N. Z. Burns, P. S.
Baran, R. W. Hoffmann, Angew. Chemie Int. Ed. 2009, 48, 2854–
2867; c) T. Newhouse, P. S. Baran, R. W. Hoffmann, Chem. Soc.
Rev. 2009, 38, 3010–3021; d) V. P. Ananikov, L. L. Khemchyan, Y.
V Ivanova, V. I. Bukhtiyarov, A. M. Sorokin, I. P. Prosvirin, S. Z.
Vatsadze, A. V Medved’ko, V. N. Nuriev, A. D. Dilman, et al., Russ.
Chem. Rev. 2014, 83, 885–985.
[2]
For some state of the art examples see a) J.-P. Berndt, Y.
Radchenko, J. Becker, C. Logemann, D. R. Bhandari, R. Hrdina, P.
R. Schreiner, Chem. Sci. 2019, 10, 3324–3329; b) S. Mkrtchyan, V.
O. Iaroshenko, Chem. Commun. 2020, 56, 2606–2609; c) A.
Gevorgyan, S. Mkrtchyan, T. Grigoryan, V. O. Iaroshenko, Org.
Chem. Front. 2017, 4, 2437–2444; d) L. Marin, G. Force, R. Guillot,
V. Gandon, E. Schulz, D. Lebœuf, Chem. Commun. 2019, 55,
5443–5446; e) I. C. S. Wan, M. D. Witte, A. J. Minnaard, Org. Lett.
2019, 21, 7669–7673; f) R. Hrdina, F. M. Metz, M. Larrosa, J.-P.
Berndt, Y. Y. Zhygadlo, S. Becker, J. Becker, European J. Org.
Chem. 2015, 2015, 6231–6236. i) S. Mkrtchyan, V. O. Iaroshenko,
European J. Org. Chem. 2018, 2018, 6867–6875.
[3]
a) B. P. Mundy, M. G. Ellerd, J. Favaloro, F.G., Name Reactions
and Reagents in Organic Synthesis, John Wiley & Sons, Ltd, 2013;
b) T.-X. Métro, J. Bonnamour, T. Reidon, A. Duprez, J. Sarpoulet, J.
Martinez, F. Lamaty, Chem. – A Eur. J. 2015, 21, 12787–12796; c)
S. Sharma, J. Das, W. M. Braje, A. K. Dash, S. Handa,
ChemSusChem 2020, n/a, DOI 10.1002/cssc.202000317.
5
This article is protected by copyright. All rights reserved.