Heterocyclic adamantane derivatives
Russ. Chem. Bull., Int. Ed., Vol. 69, No. 10, October, 2020
1963
washed with acetone, and dried. Yield 52%. Found (%): C, 58.3;
H, 6.4; N, 10.3. C26H36Cl2CuN4. Calculated (%): C, 57.9; H, 6.7;
N, 10.4. IR, ν/cm–1: 3287 (s), 2903 (s), 2847 (s), 1454 (s),
1400 (w), 1348 (w), 1341 (w), 1313 (w), 1287 (w), 1115 (s),
1092 (m), 1049 (s), 988 (s), 964 (s), 874 (s), 845 (w), 812 (m),
721 (s), 667 (m), 606 (m), 465 (w).
10. P. Cabildo, R.M. Claramunt, D. Sanz, M. C. Foces-Foces,
F. H. Cano, J. P. Fayet, M. C. Vertut, J. Elguero, J. Heterocycl.
Chem., 1986, 23, 1045.
11. M. E. Gonzalez, B. Alarcon, P. Cabildo, R. M. Claramunt,
D. Sanz, J. Elguero, Eur. J. Med. Chem., 1985, 20, 359.
12. M. A. Khanfar, A. M. Jaber, M. A. AlDamen, R. A. Al-
Qawasmeh, M. A. Khanfar, A. M. Jaber, M. A. AlDamen,
R. A. Al-Qawasmeh, Molecules, 2018, 23, 701.
13. J. Z. Travis, B. L. Martinez, R. L. LaDuca, Z. Anorg. Allg.
Chem., 2018, 644, 33.
14. G. A. Senchyk, A. B. Lysenko, E. B. Rusanov, A. N.
Chernega, J. Jezierska, K. V Domasevitch, A. Ozarowski,
Eur. J. Inorg. Chem., 2012, 5802.
15. O. Ermer, J. Am. Chem. Soc., 1988, 110, 3747.
16. G. A. Senchyk, A. B. Lysenko, E. B. Rusanov, A. N.
Chernega, H. Krautscheid, K. V. Domasevitch, Inorg. Chim.
Acta, 2009, 362, 4439.
17. J. Chyba, M. Novák, P. Munzarová, J. Novotný, R. Marek,
Inorg. Chem., 2018, 57, 8735.
18. G. A. Senchyk, H. Krautscheid, K. V. Domasevitch, Acta
Crystallogr., Sect. E Crystallogr. Commun., 2019, 75, 1145.
19. G. A. Senchyk, A. B. Lysenko, E. B. Rusanov, K. V. Domas-
evitch, Acta Crystallogr., Sect. E Crystallogr. Commun., 2019,
75, 808.
20. D. Pavlov, T. Sukhikh, E. Filatov, A. Potapov, Molecules,
2019, 24, 2717.
21. Y. N. Klimochkin, I. K. Moiseev, M. V. Leonova, S. N.
Nikolaeva, E. I. Boreko, Pharm. Chem. J., 2017, 51, 13.
22. R. Leiva, M. Barniol-Xicota, S. Codony, T. Ginex, E. Van-
derlinden, M. Montes, M. Caffrey, F. J. Luque, L. Naesens,
S. Vázquez, J. Med. Chem., 2018, 61, 98.
23. V. S. Gavrilova, E. A. Ivleva, D. I. Gnusarev, V. A. Osyanin,
Y. N. Klimochkin, Russ. J. Org. Chem., 2015, 51, 1382.
24. V. Nair, T. D. Suja, K. Mohanan, Tetrahedron Lett., 2005,
46, 3217.
X-ray diffraction studies were performed by a standard pro-
cedure on a Bruker Apex DUO automated four-circle diffracto-
meter equipped with a CCD detector and a graphite monochrom-
ator using molybdenum radiation (λ = 0.71073 Å). The intensi-
ties of reflections were measured by ϕ- and ω-scanning of narrow
frames (0.5°). Absorption corrections were applied using the
SADABS program.43 The structures were solved by direct meth-
ods and refined by the full-matrix least-squares method with
anisotropic displacement parameters for all nonhydrogen atoms
using the SHELXT44 and SHEXL program suites45 via the Olex2
graphical interface.46 Hydrogen atoms were positioned geo-
metrically and refined using a rigid-body model. The O atom of
one nitrate ion of complex 7 was disordered over two positions
and refined using SIMU restraints. Crystallographic parameters
and the X-ray data collection and structure refinement statistics
are given in Table 2. The relatively high R factor and large re-
sidual electron density peaks for structure 8 are attributed to the
fact that the crystal was a twin, and it was refined using the twin
matrix (1 0 0.4 0 -1 0 0 0 -1) with BASF = 0.25 in the final refine-
ment steps. The X-ray diffraction data were deposited with the
Cambridge Crystallographic Data Centre (CCDC 1956464—
1956468), can be obtained from the authors, and are available
The study was performed within the framework of
the state assignment for the Nikolaev Institute of Inor-
ganic Chemistry of the Siberian Branch of the Russian
Academy of Sciences in the field of fundamental scientific
research.
25. E. A. Ivleva, I. M. Tkachenko, V. S. Gavrilova, Y. N.
Klimochkin, Russ. J. Org. Chem., 2016, 52, 1394.
26. E. A. Ivleva, I. M. Tkachenko, Y. N. Klimochkin, Russ. J.
Org. Chem., 2016, 52, 1558.
References
1. P. Cabildo, R. M. Claramunt, J. Elguero, J. Heterocycl. Chem.,
1984, 21, 249.
2. A. I. Kuznetsov, I. M. Senan, R. T. Alasadi, N. M. Abdulnabi,
T. M. Serova, Russ. Chem. Bull., 2018, 67, 1110.
3. V. B. Sokolov, A. Y. Aksinenko, T. A. Epishina, T. V. Goreva,
Russ. Chem. Bull., 2018, 67, 1401.
27. Y. N. Klimochkin, A. V. Yudashkin, E. O. Zhilkina, E. A.
Ivleva, I. K. Moiseev, Y. F. Oshis, Russ. J. Org. Chem., 2017,
53, 971.
28. M. V. Leonova, M. Y. Skomorokhov, I. K. Moiseev, Y. N.
Klimochkin, Russ. J. Org. Chem., 2016, 51, 1703.
29. B. A. Tkachenko, N. A. Fokina, L. V. Chernish, J. E. P. Dahl,
S. Liu, R. M. K. Carlson, A. A. Fokin, P. R. Schreiner, Org.
Lett., 2006, 8, 1767.
4. V. B. Sokolov, A. Y. Aksinenko, T. A. Epishina, T. V. Goreva,
Russ. Chem. Bull., 2019, 68, 1424].
5. R. I. Khusnutdinov, N. A. Shchadneva, Russ. Chem. Rev.,
2019, 88, 800.
6. R. M. Claramunt, M. D. Santa María, I. Forfar, F. Aguilar-
Parrilla, M. Minguet-Bonvehí, O. Klein, H. H. Limbach,
C. Foces-Foces, A. L. Llamas-Saiz, J. Elguero, J. Chem. Soc.,
Perkin Trans. 2, 1997, 1867.
7. R. M. Claramunt, C. López, M. De Los Angeles García,
M. Pierrot, M. Giorgi, J. Elguero, J. Chem. Soc., Perkin Trans.
2, 2000, 2049.
8. P. Cabildo, R. M. Claramunt, I. Forfar, J. Elguero, Tetrahedron
Lett., 1994, 35, 183.
30. L. Wanka, C. Cabrelle, M. Vanejews, P. R. Schreiner, Eur.
J. Org. Chem., 2007, 1474.
31. V. V. Zarubaev, E. L. Golod, P. M. Anfimov, A. A. Shtro,
V. V. Saraev, A. S. Gavrilov, A. V Logvinov, O. I. Kiselev,
Bioorg. Med. Chem., 2010, 18, 839.
32. A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C.
Verschoor, J. Chem. Soc., Dalton Trans., 1984, 1349.
33. L. Yang, D. R. Powell, R. P. Houser, Dalton Trans., 2007, 955.
34. F. A. Brede, J. Heine, G. Sextl, K. Müller-Buschbaum, Chem.
Eur. J., 2016, 22, 2708.
35. I. D. Giles, J. C. DePriest, J. R. Deschamps, J. Coord. Chem.,
2015, 68, 3611.
9. P. Cabildo, R. M. Claramunt, D. Sanz, M. C. Foces-Foces,
F. Hernandez Cano, J. Catalan, J. Elguero, Tetrahedron, 1985,
41, 473.
36. Y. M. Davydenko, I. O. Fritsky, V. O. Pavlenko, F. Meyer,
S. Dechert, Acta Crystallogr., Sect. E, 2011, 67, m732.