High-Affinity Ligands for the p56lck SH2 Domain
J ournal of Medicinal Chemistry, 1999, Vol. 42, No. 4 729
(5) Molina, T. J .; Kishihara, K.; Siderovski, D. P.; van Ewijk, W.;
Narendran, A.; Timms, E.; Wakeham, A.; Paige, C. J .; Hartman,
K.-U.; Veillette, A.; Davison, D.; Mark, T. W. A Dominant-
Negative Transgene Defines a Role for p56lck in Thymopoiesis.
Nature 1992, 357, 161-164.
(6) Levin, D. S.; Anderson, S. J .; Forbush, K. A.; Perlmutter, R. M.
Profound Block in Thymocyte Development in Mice Lacking
p56lck. EMBO J . 1993, 12, 1671-1680.
of final compounds were carried out as described in the
previous example.
3. In h ibitor Ch a r a cter iza tion a n d P u r ity. All peptide
derivatives showed satisfactory 400 MHz 1H NMR spectra,
FAB mass spectra (M+ + H) and/or (M+ + Na), amino acid
analyses including peptide recovery, and HPLC purity in two
solvent systems (>95%).
Molecu la r Mod elin g. Compounds 12 and 18 were modeled
using the crystal structure of the SH2 Lck Ac-Tyr(P)-Glu-Glu-
Ile complex11 as starting geometry. The corresponding pY + 1
residue and the 4-methoxybenzyl substituents were initially
positioned in the protein surface using manual docking
procedures with the hydrophobic C-terminus located in a
similar spatial position as the pY + 3 Ile side chain. Subse-
quently, a quenching molecular dynamics (QMD) protocol was
used to explore alternative docking orientations. The QMD was
performed using the program CharmM23 with a production run
of 100 ps and a temperature of 600 K. Following the QMD, a
sampling of the molecular dynamics trajectory was performed
at every picosecond, and each configuration was energy-
minimized using conjugate gradients protocol. The electrostatic
Coulombic potential was computed using a distance-dependent
dielectric constant of 4 with CharmM charges for the protein
and MNDO ESP charges for the ligand, using MOPAC.24 After
energy minimization, a cluster analysis of the ligand atoms
was carried out in coordinate space, and the lowest intermo-
lecular energy minimum, for each cluster, was selected as
representative of the cluster. Analysis of the structure for the
final complex of each cluster obtained identified two suitable
protein-inhibitor models for compound 12. These models were
further optimized by performing 400 ps of MD with explicit
solvent representation, using a TIP3P25 solvent cap of 25 Å
around the inhibitor. In this MD protocol, all atoms within 13
Å radius around the inhibitor were allowed to move freely.
The rest of the protein was tethered as follows: (1) the protein
was constrained using a potential harmonic constraint of 5
kcal (Å2)-1; (2) the remaining solvent molecules were main-
tained within the sphere limit by applying the CharmM DROP
restraint option.
(7) Strauss, D. B.; Chan, A. C.; Patai, B.; Weiss, A. SH2 Domain
Function Is Essential for the Role of the Lck Tyrosine Kinase
in T Cell Receptor Signal Transduction. J . Biol. Chem. 1996,
271, 9976-9981.
(8) Couture, C.; Songyang, Z.; J ascur, T.; Williams, S.; Tailor, P.;
Cantley, L. C.; Mustelin, T. Regulation of the Lck SH2 Domain
by Tyrosine Phosphorylation. J . Biol. Chem. 1996, 271, 24880-
24884.
(9) Eck, M. J .; Shoelson, S. E.; Harrison, S. C. Recognition of a High-
Affinity Phosphotyrosyl Peptide by the Src Homology-2 Domain
of p56lck. Nature 1993, 362, 87-91.
(10) Eck, M. J .; Atwell, S. K.; Shoelson, S. E.; Harrison, S. C. Crystal
Structure of the Regulatory Domains of the Src Family Tyrosine
Kinase P56lck. Nature (London) 1994, 368, 764-769.
(11) Tong, L.; Warren, T. C.; King, J .; Betageri, R.; Rose, J .; J akes,
S. Crystal Structures of the Human p56lck SH2 Domain in
Complex with Two Short Phosphotyrosyl Peptides at 1.0 and
1.8 Å Resolution. J . Mol. Biol. 1996, 256, 601-610.
(12) Pacofsky, G. J .; Lackey, K.; Alligood, K. J .; Berman, J .; Charifson,
P. S.; Crosby, R. M.; Dorsey, G. F. J r.; Feldman P. L.; Gilmer,
T. M.; Hummel, C. W.; J ordan, S. R.; Mohr, C.; Shewchuk, L.
M.; Sternbach, D. D.; Rodriguez, M. Potent Dipeptide Inhibitors
of the pp60c-src SH2 Domain. J . Med. Chem. 1998, 41, 1894-
1908.
(13) Plummer, M. S.; Lunney, E. A.; Para, K. S.; Vara Prasad, J . V.
N.; Shahripour, A.; Singh, J .; Stankovic, C. J .; Humblet, C.;
Fergus, J . H.; Marks, J . S.; Sawyer, T. K. Hydrophobic D-Amino
Acids in the Design of Peptide Ligands for the pp60Src SH2
Domain. Drug Des. Discovery 1996, 13, 75-81.
(14) Plummer, M. S.; Holland, D. R.; Shahripour, A.; Lunney, E. A.;
Fergus, J . H.; Marks, J . S.; McConnell, P.; Mueller, W. T.;
Sawyer, T. K. Design, Synthesis, and Cocrystal Structure of a
Nonpeptide Src SH2 Domain Ligand. J . Med. Chem. 1997, 40,
3719-3725.
(15) Shahripour, A.; Para, K. S.; Plummer, M. S.; Lunney, E. A.;
Holland, D. R.; Rubin, J . R.; Humblet, C.; Fergus, J . H.; Marks,
J . S.; Saltiel, A. R.; Sawyer, T. K. Structure-Based Design of
Novel, Dipeptide Ligands Targeting the pp60src SH2 Domain.
Bioorg. Med. Chem. Lett. 1997, 7, 1107-1112.
(16) Rodriguez, M.; Crosby, R.; Alligood, K.; Gilmer, T.; Berman, J .
Tripeptides as Selective Inhibitors of Src-SH2 Phosphoprotein
Interactions. Lett. Pept. Sci. 1995, 2, 1-6 and references therein.
(17) Plummer, M. S.; Lunney, E. A.; Para, K. S.; Shahripour, A.;
Stankovic, C. J .; Humblet, C.; Fergus, J . H.; Marks, J . S.;
Herrera, R.; Hubbell, S.; Saltiel, A.; Sawyer, T. K. Design of
Peptidomimetic Ligands for the pp60src SH2 Domain. Bioorg.
Med. Chem. 1997, 7, 41-47.
Lck SH2 Dom a in Bin d in g Assa y. The binding affinities
of these ligands for the Lck SH2 domain were measured in a
competitive binding assay. The protein used is a glutathione-
S-transferase (GST) fusion protein, and the binding constant
is determined using surface plasmon resonance according to
a published protocol.15 The reported KD values are the mean
of at least four separate determinations with a standard
deviation of (20%.
Ackn owledgm en t. We are grateful to Colette Bouch-
er and Serge Valois for analytical support and to J anice
Kelland for critical review of the manuscript.
(18) Morelock, M. M.; Ingraham, R. H.; Betageri, R.; J akes, S.
Determination of Receptor-Ligand Kinetics and Equilibrium
Binding Constants Using Surface Plasmon Resonance: Applica-
tion to the Lck SH2 Domain and Phosphotyrosyl Peptides. J .
Med. Chem. 1995, 38, 1309-1318.
Su p p or tin g In for m a tion Ava ila ble: Full tabulation of
1H NMR, FAB mass spectra, amino acid analyses, and HPLC
purity data for new inhibitors. This material is available free
(19) Unpublished results.
(20) Perich, J . W.; Reynolds, E. C. The Facile One-Pot Synthesis of
NR-(9-Fluorenylmethoxycarbonyl)-O-(O′,O”-Dialkylphosphoro)-
L-Tyrosines Using Dialkyl N,N-Diethylphophoramidites. Synlett
1991, 577-578.
(21) Saigo, K.; Kai, M.; Yonezawa, N.; Hasegawa, M. Synthesis and
Optical Resolution of 1-(4-Isopropylphenyl)-Ethylamine. Syn-
thesis 1985, 2, 214-216.
(22) Capson, T. L.; Poulter, C. D. A Facile Synthesis of Primary
Amines from Carboxylic Acids by the Curtius Rearrangement.
Tettrahedron Lett. 1984, 3515-3518.
(23) Molecular Simulations Inc., Scranton Rd, San Diego, CA 92121-
3752.
Refer en ces
(1) Beattie, J . SH2 Domain Protein Interaction and Possibilities for
Pharmacological Intervention. Cell. Signal 1996, 8, 75-86.
(2) Koch, C. A.; Anderson, D.; Moran, M. F.; Ellis, C.; Pawson, T.
SH2 and SH3 Domains: Elements that Control Interactions of
Cytoplasmic Signaling Proteins. Science 1991, 252, 668-674.
(3) Songyang, Z.; Shoelson, S. E.; Chaudhuri, M.; Gish, G.; Pawson,
T.; Haser, W. G.; King, F.; Roberts, T.; Ratnofsky, S.; Lechleider,
R. J .; Neel, B. G.; Birge, R. B.; Fajardo, J . E.; Chou, M. M.;
Hidesaburo, H.; Schaffhausen, B.; Cantley, L. C. SH2 Domains
Recognize Specific Phosphopeptide Sequences. Cell 1993, 72,
767-778.
(24) Steward, J . J . P. MOPAC Manual, MOPAC 6.0; Frank J . Seiler
Research Laboratory, United State Air Force Academy, 1990.
(25) J orgensen, W. L.; Briggs, J . M.; Contreras, M. L. J . Phys. Chem.
1990, 94, 1683-1687.
(4) Weil, R.; Veillette, A. Signal Transduction by the Lymphocyte-
Specific Tyrosine Protein Kinase p56lck. Curr. Top. Microbiol.
Inmunol. 1996, 205, 63-87.
J M980612I