246 Organometallics, Vol. 26, No. 1, 2007
Notes
standard Schlenk techniques with conventional glassware, and
solvents were dried according to standard procedures. NMR data
were collected on a Typ Bruker DMX 300 (303 K), at 121.5 MHz
(31P), 75 MHz (13C), and 300.1 MHz (1H), using TMS and 85%
H3PO4 as standard references; J/Hz. Mass spectra were recorded
on a Kratos MS 50 spectrometer (70 eV); only m/z values are given.
Melting points were obtained on a Bu¨chi 535 capillary apparatus.
Elemental analyses were performed using a Elementar (Vario EL)
analytical gas chromatograph. The κP notation in the nomenclature
is intended to differentiate between P- and O-coordination of the
appropriate heterocycle to the metal.
Synthesis of Complexes 4a,b. Ninety-six milligrams (0.16
mmol) (a) or 147 mg (0.25 mmol) (b) of 1 and 10 equiv of the
corresponding aldehyde (a: benzaldehyde, b: o-tolylaldehyde)
dissolved in 1.2 or 1.7 mL, respectively, of toluene were stirred at
65 °C for 2 h. The solvent was evaporated and the solids were
washed with n-pentane to deliver the products as colorless solids.
Figure 1. Molecular structure of 4a in the crystal (thermal ellip-
soids at 50% probability level). H atoms (except H1 and H2) are
omitted for clarity. Selected bond lengths [Å] and angles [deg]:
P1-W1 2.497(1), P1-C1 1.899(2), P1-O2 1.645(2), P1-C3
1.877(2), C1-O1 1.423(3), O1-C2 1.416(3), C2-O2 1.447(3);
C1-P1-O2 88.9(1), P1-C1-O1 102.7(1), C1-O1-C2 107.5-
(2), O2-C2-O1 108.2(2), P1-O2-C2 114.4(1), C1-P1-O2-
C2 6.3(2).14
Selected data for 4a. Mp: 168 °C. Yield: 47 mg (42%). 1H NMR
3
(C6D6): 0.87 (s, 3H, Cp*-CH3), 1.18 (d, J(P,H) ) 10.4 Hz, 3H,
Cp*(C1)-CH3), 1.51 (dd, J(H,H) ) 5.5 Hz, J(H,H) ) 0.9 Hz, 3H,
Cp*-CH3), 1.57 (dd, J(H,H) ) 3.7 Hz, J(H,H) ) 0.9 Hz, 3H, Cp*-
CH3), 1.83 (s, 3H, Cp*-CH3), 5.64 (d, J(P,H) ) 13.6 Hz, 1H, PCH),
5.71 (s, 1H, POCH), 7.06-7.24 (mc, 6H, Ph), 7.67 (dmc, J(H,H)
) 6.5 Hz, 2H, Ph), 7.79 (br d, J(H,H) ) 7.5 Hz, 2H, Ph). 13C{1H}
NMR (C6D6): 9.8 (d, J(P,C) ) 1.0 Hz, Cp*-CH3), 10.2 (d, J(P,C)
) 1.9 Hz, Cp*-CH3), 10.4 (d, J(P,C) ) 1.3 Hz, Cp*-CH3), 11.5 (s,
Cp*-CH3), 13.4 (d, J(P,C) ) 5.5 Hz, Cp*(C1)-CH3), 65.0 (d, 1J(P,C)
) 5.5 Hz, Cp*(C1)), 94.5 (s, PCO), 102.7 (d, J(P,C) ) 9.4 Hz,
OCO), 125.1 (s, Ph), 125.8 (d, J(P,C) ) 2.9 Hz, Ph), 127.2 (d,
J(P,C) ) 2.6 Hz, Ph), 127.3 (s, Ph), 127.6 (d, J(P,C) ) 2.3 Hz,
Ph), 128.3 (s, Ph), 132.5 (d, J(P,C) ) 2.3 Hz, Ph), 134.3 (d, J(P,C)
) 10.3 Hz, Cp*), 134.7 (d, J(P,C) ) 2.3 Hz, Ph), 137.9 (s, Cp*),
141.2 (d, J(P,C) ) 5.2 Hz, Cp*), 141.7 (d, J(P,C) ) 9.1 Hz, Cp*),
195.2 (dSat, 2J(P,C) ) 7.4 Hz, 1J(W,C) ) 125.4 Hz, cis-CO), 196.5
mass spectrometry, and elemental analyses and, in addition,
complex 4a by single-crystal X-ray diffraction analysis.
The 31P{1H} NMR parameters of the new compounds are of
special interest, as they show resonances around 138 ppm (4a:
138.6 (1J(W,P) ) 284.8 Hz) and 4b: 137.4 (1J(W,P) ) 282.3
Hz)), which is significantly highfield-shifted in comparison to
known 1,3,2-oxaphospholane complexes, which resonate be-
tween 170 and 195 ppm and also have significantly higher phos-
phorus-tungsten coupling constant magnitudes.9 The two hetero-
cyclic ring carbon atoms of 4a,b display resonances at 94.5 (s,
PCO) and 102.7 ((2+3)J(P,C) ) 9.4 Hz, OCO) (4a) and 92.1 (d,
J(P,C) ) 6.1 Hz, PCO) and 99.5 ((2+3)J(P,C) ) 8.7 Hz, OCO)
(4b), thus confirming the different carbon environments; this
assignment was made tentatively. It should be noted that small
coupling constants have been observed previously for endocyclic
phosphorus-carbon bonds in heterocyclic PIII complexes.12
The structure of 4a (Figure 1) shows the nonplanar 1,3,4-
dioxaphospholane ring as a central unit having the two phenyl
groups and the Cp* in a cis position; O1 is 0.57 Å out of the
best plane (C1-P1-O2-C2 torsion angle 6.3° and folding
angle with C2-O1-C1 138°). Noteworthy is also that the two
P-C distances (P1-C1 1.899(2) Å, P1-C3 1.877(2) Å) are at
the upper boundary for P-Csp3 single bonds.13
2
(d, J(P,C) ) 30.1 Hz, trans-CO) ppm. MS (EI, 70 eV): m/z )
2
702 [M+, 9]. 197.9 (d, J(P,C) ) 33.5 Hz, trans-CO) ppm. MS
(EI, 70 eV): m/z ) 588 [M+, 28]. Anal. Calc: C 40.84, H 3.60.
Found: C 41.39, H 3.80.
Selected data for 4b. Mp: 198 °C (dec). Yield: 68 mg (37%).
1H NMR (CDCl3): 0.99 (s, 3H, Cp*-CH3), 1.32 (d, 3J(P,H) ) 10.6
Hz, 3H, Cp*(C1)-CH3), 1.71-1.75 (m, 6H, Cp*-CH3), 1.82 (s, 3H,
Cp*-CH3), 2.52 (s, 3H, Ar-CH3), 2.75 (s, 3H, Ar-CH3), 6.02 (d,
J(P,H) ) 16.4 Hz, 1H, PCH), 6.22 (d, J(P,H) ) 1.7 Hz, 1H, POCH),
7.22-7.44 (mc, 6H, Ar), 7.22-7.44 (mc, 2H, Ar) ppm. 13C{1H}
NMR (CDCl3): 9.5 (d, J(P,C) ) 1.3 Hz, Cp*-CH3), 10.4 (d, J(P,C)
) 1.9 Hz, Cp*-CH3), 11.0 (d, J(P,C) ) 1.3 Hz, Cp*-CH3), 11.3 (s,
Cp*-CH3), 13.6 (d, J(P,C) ) 5.5 Hz, Cp*(C1)-CH3), 18.0 (s, Ar-
CH3), 21.6 (s, Ar-CH3), 64.7 (d, 1J(P,C) ) 5.8 Hz, Cp*(C1)), 92.1
(d, J(P,C) ) 6.1 Hz, PCO), 99.5 (d, J(P,C) ) 8.7 Hz, OCO), 124.4
(s, Ar-CH), 124.7 (d, J(P,C) ) 1.6 Hz, Ar-CH), 124.9 (s, Ar-CH),
126.9 (d, J(P,C) ) 2.3 Hz, Ar-CH), 127.4 (d, JP,C ) 2.3 Hz, Ar-
CH), 128.6 (s, Ar-CH), 129.7 (d, JP,C ) 1.6 Hz, Ar-CH), 129.8 (s,
Ar-CH), 132.4 (d, J(P,C) ) 2.9 Hz, Ar), 132.7 (d, J(P,C) ) 3.9
Hz, Ar), 134.0 (d, J(P,C) ) 11.3 Hz, Cp*), 135.0 (d, J(P,C) ) 2.9
Hz, Ar), 136.1 (s, Ar), 138.6 (s, Cp*), 141.4 (d, JP,C ) 5.5 Hz,
Experimental Section
General Procedures. All reactions and manipulations were
carried out under an atmosphere of deoxygenated dry argon, using
(12) This phenomenon was observed in heterocycles of various ring sizes
and constitutions; for example in three-membered heterocycles: (a) P,C
heterocycles: F. P, C: Mathey, F. Chem. ReV. 1990, 90, 997. (b) P, C
heterocycles with one additional N-ring center: Streubel, R.; Jeske, J.; Jones,
P. G.; Jones, R.; Herbst-Irmer, G. R. Angew. Chem., Int. Ed. Engl. 1994,
33, 80.
(13) Allen, F. A.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A.
G.; Taylor, R. Chem. Soc., Perkin Trans. 2 1987, 1.
2
Cp*), 141.5 (d, J(P,C) ) 9.1 Hz, Cp*), 195.6 (d, J(P,C) ) 7.4
(14) Crystal structure determination of 4a, C29H27O7PW. Crystal data:
triclinic, space group P1h (no. 2), a ) 9.2701(2) Å, b ) 11.6638(3) Å, c )
13.5918(3) Å, R ) 94.216(1)°, â ) 94.884(1)°, γ ) 110.355(1)°, U )
1364.44(5) Å3, Z ) 2, T ) 123 K. Data collection: a crystal 0.40 × 0.30
× 0.20 mm was used to register 11 368 intensities (Mo KR radiation, 2θmax
559) on a Nonius KappaCCD diffractometer. A semiempirical absorption
correction was applied. Structure solution and refinement: the structure was
solved by Patterson methods (SHELXS-9715a) and refined anisotropically
(full-matrix least-squares on F2 (program SHELXL-9715b)) to wR2 ) 0.0525
(for all data), R1 ) 0.0206 (I < 2σ(I)) for 347 parameters and 5931 inde-
pendent reflections. Hydrogen atoms were included using a riding model.
(15) (a) Sheldrick, G. M. Acta Crystallogr. A 1990, 46, 467. (b) Sheldrick,
G. M. SHELXL-97; University of Go¨ttingen, 1997.
1
2
Hz, J(W,C) ) 125.8 Hz, cis-CO), 196.3 (d, J(P,C) ) 29.7 Hz,
trans-CO) ppm. MS (EI, 70 eV): m/z ) 730 [M+, 19]. Anal.
Calc: C 50.98, H 4.28. Found: C 50.46, H 4.31.
Crystallographic data of 4a have been deposited at the Cambridge
Crystallographic Data Centre under the number CCDC 615112.
Copies may be requested free of charge from the Director, CCDC, 12
Union Road, Cambridge CB2 1EZ, England (E-mail: deposit@
ccdc.cam.ac.uk).
OM0609214