C. V. Ramana et al. / Tetrahedron Letters 48 (2007) 265–268
267
C12H25
C
14H29
O
3
O
13
O
O
C
14H29
O
O
a)
b)
c)
d)
5
6
81%
67%
61%
91%
N3
OBn
N3
OBn
OBn
H2N
OH
AcHN
OAc
1
15
C12H25
C14H29
O
O
C14H29
a)
b)
c)
d)
85%
69%
57%
94%
N3
OBn
N3
H2N
OH
AcHN
OAc
16
4
14
2
Scheme 2. Reagents and conditions: (a) (i) Tf2O, pyridine, CH2Cl2, 0 °C, 6 h; (ii) LiN3, DMF, rt, 12 h; (b) n-BuLi, THF:HMPA (7:1), C12H25Br, ꢀ78
to ꢀ40 °C, 1 h; (c) 10% Pd/C, ammonium formate, MeOH, reflux, 10 h; (d) Ac2O, Et3N, DMAP, CH2Cl2, rt, 6 h.
10. (a) Horton, D.; Swanson, F. O. Carbohydr. Res. 1970, 14,
159–171; (b) Patil, N. T.; John, S.; Sabharwal, S. G.;
Dhavale, D. D. Bioorg. Med. Chem. 2002, 10, 2155–2160.
11. (a) Ohira, S. Synth. Commun. 1989, 19, 561–564; (b) Roth,
In summary, we have reported a simple chiral pool strat-
egy for the synthesis of both enantiomers of pachastriss-
amine starting with D-glucose. The synthesis is
sufficiently flexible to allow substitution or variation in
the length of the side chain to synthesize analogues.
G. J.; Liepold, B.; Muller, S. G.; Bestmann, H. J. Synlett
¨
1996, 521–522.
12. (a) Bennek, J. A.; Gray, G. R. J. Org. Chem. 1987, 52,
892–897; (b) Murty, K. V. S. N.; Vasella, A. Helv. Chim.
Acta 2001, 84, 939–963.
Acknowledgements
13. Tronchet, J. M. J.; Gonzalez, A.; Zumwald, J. B. Helv.
Chim. Acta 1974, 57, 1505–1510.
We thank Mukund K. Gurjar for encouragement and
the Department of Science and Technology (New
Delhi), for the project grant (SR/FTP/CSA-02/2002)
under the ‘Fast Track Proposals for Young Scientists’.
AGG thanks UGC (New Delhi), S.B.S. thanks CSIR
(New Delhi), for the financial assistance in the form
of research fellowships.
25
14. Spectral data of 5. ½aꢁD ꢀ57.9 (c 1, CHCl3). IR (CHCl3) m:
3403, 3290, 3065, 2942, 2120, 1598, 1496, 1218, 1069, 754,
1
698, 666 cmꢀ1. H NMR (200 MHz, CDCl3) d: 2.15 (br s,
1H), 2.57 (d, J = 2.3 Hz, 1H), 3.67 (dd, J = 2.2, 9.8 Hz,
1H), 3.91 (dd, J = 2.3, 4.7 Hz, 1H), 4.18 (dd, J = 4.7,
9.8 Hz, 1H), 4.32–4.34 (dt, J = 2.3, 4.7 Hz, 1H), 4.64 (d,
J = 11.9 Hz, 1H), 4.77 (dd, J = 2.2, 4.7 Hz, 1H), 4.78 (d,
J = 11.9 Hz, 1H), 7.27–7.38 (m, 5H). 13C NMR
(50 MHz, CDCl3) d: 70.6 (d), 72.7 (t), 73.1 (t), 75.5 (d),
76.4 (d), 78.9 (s), 84.9 (d), 127.8 (d), 127.9 (d), 128.5 (d),
137.5 (s) ppm. ESI-MS: m/z 219.1 (23%, [M+1]+),
236.2 (38%, [M+NH4]+), 241.2 (100%, [M+Na]+), 257.1
(18%, [M+K]+). Anal. calcd for C13H14O3: C, 71.54; H,
References and notes
1. Kuroda, I.; Musman, M.; Ohtani, I. I.; Ichiba, T.; Tanaka,
J.; Gravalos, D. G.; Higa, T. J. Nat. Prod. 2002, 65, 1505–
1506.
2. Ledroit, V.; Debitus, C.; Lavaud, C.; Massiot, G. Tetra-
hedron Lett. 2003, 44, 225–228.
3. Sudhakar, N.; Kumar, A. R.; Prabhakar, A.; Jagadeesh,
B.; Rao, B. V. Tetrahedron Lett. 2005, 46, 325–327.
4. Bhaket, P.; Morris, K.; Stauffer, C. S.; Datta, A. Org. Lett.
2005, 7, 875–876.
5. Du, Y.; Liu, J.; Linhardt, R. J. J. Org. Chem. 2006, 71,
1251–1253.
6. Van Tien Berg, R. J. B. H. N.; Boltje, T. J.; Verhagen, C.
P.; Litjens, R. E. J. N.; Van Der Marel, G. A.; Overkleeft,
H. S. J. Org. Chem. 2006, 71, 836–839.
7. Ribes, C.; Falomir, E.; Carda, M.; Marco, J. A. Tetra-
hedron 2006, 62, 5421–5425.
8. (a) Defaye, J.; Ratovelomanana, V. Carbohydr. Res. 1971,
17, 57–65; (b) Defaye, J.; Horton, D.; Muesser, M.
Carbohydr. Res. 1971, 20, 305–318; (c) Yu, H.-W.; Zhang,
H.-Y.; Yang, Z.-J.; Min, J.-M.; Ma, L.-T.; Zhang, L.-H.
Pure Appl. Chem. 1998, 70, 435–438.
9. For earlier pseudodesymmetrization approaches employ-
ing sugar chirons, see: (a) Hoffmann, H. M. R.; Dunkel,
R.; Mentzel, M.; Reuter, H.; Stark, C. B. W. Chem. Eur. J.
2001, 7, 4772–4789; (b) Boulineau, F. P.; Wei, A. Org.
Lett. 2004, 6, 119–121; (c) Boulineau, F. P.; Wei, A. J.
Org. Chem. 2004, 69, 3391–3399.
25
6.47. Found: C, 71.44; H, 6.59. Spectral data of 6. ½aꢁD 56
(c 0.9, CHCl3). ESI-MS: m/z 241.3 (100%, [M+Na]+),
257.3 (24%, [M+K]+); Anal. calcd for C13H14O3: C, 71.54;
H, 6.47. Found: C, 71.49; H, 6.39.
25
15. Spectral data of 3. ½aꢁD ꢀ69 (c 1.3, CHCl3). IR (CHCl3) m:
3304, 3020, 2125, 2110, 1603, 1585, 1216, 759, 698,
638 cmꢀ1
.
1H NMR (200 MHz, CDCl3) d: 2.64 (d,
J = 2.3 Hz, 1H), 3.92–4.04 (m, 3H), 4.16 (br dd, J = 5.0,
6.1 Hz, 1H), 4.71 (dd, J = 2.3, 6.1 Hz, 1H), 4.74 (d,
J = 11.8 Hz, 1H), 4.83 (d, J = 11.8 Hz, 1H), 7.31–7.46 (m,
5H). 13C NMR (50 MHz, CDCl3) d: 59.9 (d), 69.4 (t), 69.7
(d), 73.2 (t), 76.9 (d), 78.8 (s) 79.4 (d), 127.9 (d), 128.0 (d),
128.5 (d), 137.0 (s). Anal. calcd for C13H13N3O2: C, 64.19;
H, 5.39, N, 17.27. Found: C, 64.29; H, 5.21, N, 17.18.
25
Spectral data of 4. ½aꢁD 70.1 (c 1.3, CHCl3). ESI-MS: m/z
267.3 (27%), 283.4 (40%, [M+K]+). Anal. calcd for
C13H13N3O2: C, 64.19; H, 5.39, N, 17.27. Found: C,
64.01; H, 5.61, N, 17.24.
16. Weaving, R.; Roulland, E.; Monneret, C.; Florent, J.-C.
Tetrahedron Lett. 2003, 44, 2579–2581.
25
17. Spectral data of 15. Mp: 110 °C; ½aꢁD ꢀ34.6 (c 1, CHCl3),
25
lit.7 {½aꢁD ꢀ28.4 (c 1, CHCl3)}. IR (CHCl3) m: 3019, 2927,
2855, 1743, 1676, 1550, 1467, 1374, 1215, 1049, 757 cmꢀ1
.
1H NMR (200 MHz, CDCl3) d: 0.86 (t, J = 6.8 Hz, 3H),
1.23 (br s, 24H), 1.40–1.48 (m, 2H), 1.97 (s, 3H), 2.15 (s,
3H), 3.58 (dd, J = 7.9, 8.6 Hz, 1H), 3.85–3.93 (m, 1H), 4.06