L. Joucla et al. / Tetrahedron Letters 46 (2005) 8177–8179
8179
(2CH), 128.7 (C+2CH), 129.7 (C), 130.3 (CH), 133.4
(CH), 134.2 (CH), 135.7 (C), 136.5 (C), 138.6 (C), 141.9
(C), 151.1 (CO), 162.7 (CO); HRMS (EI) m/z calcd for
C27H24N2O5S: 488.1406; found: 488.1408.
alternative to Fischer indole synthesis which is the most
useful route to Paullones used so far.3
8. (a) Kozikowski, A. P.; Ma, D. Tetrahedron Lett. 1991, 32,
3317–3320; (b) Beccalli, E. M.; Broggini, G.; Martinelli,
M.; Paladino, G.; Zoni, C. Eur. J. Org. Chem. 2005, 10,
2091–2096.
9. (a) Lane, B. S.; Sames, D. Org. Lett. 2004, 6, 2897–2900;
(b) Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem.
Soc. 2005, 127, 8050–8057.
3. Conclusion
In summary, we have shown that Pd(OAc)2/PPh3/
Ag2CO3 is a mild, fast and efficient high yielding cata-
lytic system for the synthesis of fused heterocycles with
a benzazepinone moiety. This methodology can be
applied to heterocycles such as indole, pyrrolo[2,3-b]pyr-
idine, benzo[b]thiophene or pyrrole. In addition, we
proposed a simple and novel synthetic route to pyr-
rolo[2,3-c]azepinone and indolo[3,2-d]benzazepinone
ring systems. Further studies are under investigation in
order to obtain new Paullone analogues and will be
published in due course.
10. Selected data for 4b. Mp 104–106 °C (EtOAc/PE); 1H
NMR (300 MHz, DMSO-d6): d 1.03 (t, 3H, J = 7.2 Hz,
CH3), 1.47 (s, 9H, 3CH3), 3.34–3.54 (m, 2H, CH2), 4.26
(d, 1H, J = 15.1 Hz, CH2), 5.09 (d, 1H, J = 15.1 Hz, CH2),
5.92 (d, 1H, J = 10.7 Hz, CH2), 6.05(d, 1H, J = 10.7 Hz,
CH2), 7.32 (t, 1H, J = 7.7 Hz, HAr), 7.44–7.63 (m, 4H,
H
H
Ar), 7.83 (d, 1H, J = 8.5Hz, H Ar), 8.03–8.06 (m, 2H,
Ar); 13C NMR (75MHz, CDCl 3): d 15.2 (CH3), 28.2
(3CH3), 48.9 (CH2), 64.2 (CH2), 74.3 (CH2), 83.5(C),
111.9 (CH), 121.3 (C), 122.1 (2CH), 124.6 (C), 126.3 (CH),
127.3 (CH), 128.3 (CH), 128.5(CH), 128.7 (C), 129.4 (C),
132.9 (C), 136.1 (C), 139.8 (C), 150.8 (CO), 161.6 (CO);
HRMS (EI) m/z calcd for C24H26N2O4: 406.1893; found:
406.1894.
Acknowledgements
This research work was supported by a Grant from the
`
´
Ministere de lÕEnseignement Superieur et de la Recher-
11. Selected data for 6. Mp 77–79 °C (EtOH); 1H NMR
(300 MHz, CDCl3): d 1.19 (t, 3H, J = 7.2 Hz, CH3), 1.50
(s, 9H, 3CH3), 3.55–3.59 (m, 2H, CH2), 4.24 (d, 1H,
J = 14.7 Hz, CH2), 5.11 (d, 1H, J = 14.7 Hz, CH2), 5.54
(d, 1H, J = 9.5Hz, CH 2), 6.09 (d, 1H, J = 9.5Hz, CH 2),
6.55 (d, 1H, J = 2.8 Hz, HPyr), 7.22 (d, 1H, J = 2.8 Hz,
HPyr), 7.27–7.69 (m, 4H, HAr); 13C NMR (75MHz,
CDCl3): d 15.1 (CH3), 28.1 (3CH3), 48.9 (CH2), 64.6
(CH2), 78.3 (CH2), 82.9 (C), 107.7 (CH), 123.5(C), 127.0
(CH), 127.3 (CH), 128.2 (CH), 128.6 (CH), 129.2 (CH),
130.8 (C), 133.7 (C), 135.0 (C), 151.2 (CO), 161.2 (CO);
HRMS (EI) m/z calcd for C20H24N2O4: 356.1736; found:
356.1735.
che to L.J. and A.P.
References and notes
1. Cimino, G.; De Rosa, S.; De Stephano, S.; Mazzarella, L.;
Puliti, R.; Sodano, G. Tetrahedron Lett. 1982, 23, 767–768.
2. Linington, R. G.; Williams, D. E.; Tahir, A.; Van Soest,
R.; Andersen, R. J. Org. Lett. 2003, 5, 2735–2738.
3. Schultz, C.; Link, A.; Leost, M.; Zaharevitz, D. W.;
Gussio, R.; Sausville, A. A.; Meijer, L.; Kunick, C. J.
Med. Chem. 1999, 42, 2909–2919.
12. Selected data for 8b and 8c. Compound 8b: mp 145–
4. (a) Knockaert, M.; Greengard, P.; Meijer, L. Trends
Pharmacol. Sci. 2002, 23, 417–425; (b) Meijer, L.; Flajolet,
M.; Greengard, P. Trends Pharmacol. Sci. 2004, 25, 471–
480.
1
146 °C (EtOAc/PE); H NMR (300 MHz, CDCl3): d 3.07
(d, 1H, J = 13.9 Hz, CH2), 3.35(s, 3H, CH ), 3.91 (s, 3H,
3
CH3), 3.97 (d, 1H, J = 13.9 Hz, CH2), 7.20 (t, 1H,
J = 7.0 Hz, HAr), 7.28–7.49 (m, 5H, HAr), 7.55 (d, 1H,
J = 7.8 Hz, HAr), 7.73 (d, 1H, J = 7.9 Hz, HAr); 13C NMR
(75MHz, CDCl 3): d 31.9 (CH3), 32.4 (CH2), 37.7 (CH3),
109.8 (CH), 112.4 (C), 118.8 (CH), 120.1 (CH), 122.9
(CH), 124.4 (CH), 124.8 (CH), 125.1 (C), 125.7 (C), 128.1
(CH), 128.7 (CH), 133.8 (C), 139.3 (C), 141.8 (C), 172.9
(CO); HRMS (EI) m/z calcd for C18H16N2O: 276.1263;
found: 276.1264. Compound 8c: mp 102–103 °C (EtOAc/
PE); 1H NMR (300 MHz, CDCl3): d 1.16 (t, 3H,
J = 7.0 Hz, CH3), 1.25(t, 3H, J = 7.0 Hz, CH3), 3.11
(d, 1H, J = 13.6 Hz, CH2), 3.41–3.51 (m, 1H, CH2), 3.56–
3.70 (m, 3H, CH2), 3.96 (d, 1H, J = 13.6 Hz, CH2), 4.73
(d, 1H, J = 10.0 Hz, CH2), 5.39 (d, 1H, J = 10.0 Hz, CH2),
5.57 (s, 2H, CH2), 7.21–7.48 (m, 4H, HAr), 7.54 (d, 1H,
J = 8.3 Hz, HAr), 7.73 (d, 1H, J = 7.9 Hz, HAr), 7.88 (d,
1H, J = 7.9 Hz, HAr), 7.95(br d, 1H, J = 7.6 Hz, HAr);
13C NMR (75MHz, CDCl 3): d 15.2 (CH3), 15.3 (CH3),
32.6 (CH2), 64.3 (CH2), 64.6 (CH2), 73.9 (CH2), 78.9
(CH2), 110.3 (CH), 112.9 (C), 118.9 (CH), 121.0 (CH),
123.5(CH), 124.8 (CH), 125.3 (C), 126.0 (CH), 126.2 (C),
128.6 (CH), 129.0 (CH), 134.2 (C), 139.2 (C), 140.8 (C),
172.7 (CO); HRMS (EI) m/z calcd for C22H24N2O3:
364.1787; found: 364.1788.
´
5. Mouaddib, A.; Joseph, B.; Hasnaoui, A.; Merour, J.-Y.
Synthesis 2000, 549–556.
6. (a) Fournier Dit Chabert, J.; Gozzi, C.; Lemaire, M.
Tetrahedron Lett. 2002, 43, 1829–1833; (b) Fournier Dit
Chabert, J.; Joucla, L.; David, E.; Lemaire, M. Tetra-
hedron 2004, 60, 3221–3230.
7. Example of Heck reaction, preparation of 2a: A mixture of
1a (154 mg, 0.25 mmol), triphenylphosphine (13 mg,
0.05mmol), palladium acetate (5.6 mg, 0.025mmol) and
silver carbonate (138 mg, 0.5mmol) in anhydrous DMF
(5mL) was vigorously stirred at 100 °C for 2 h. After
cooling to room temperature, the solvent was removed
under reduced pressure. The residue was taken up in
dichloromethane and filtered over CeliteÒ, rinsed with
dichloromethane. The solvent was evaporated in vacuo
and the crude residue was purified by flash column
chromatography on silica gel (petroleum ether/ethyl
acetate 9:1) to give 2a (112 mg, 92%). Mp 154 °C dec.
(Et2O); 1H NMR (300 MHz, CDCl3): d 1.51 (s, 9H,
3CH3), 3.66 (d, 1H, J = 14.5Hz, CH 2), 5.09 (d, 1H,
J = 14.5Hz, CH 2), 7.12 (br d, 2H, J = 8.5Hz, H Ar), 7.20
(t, 2H, J = 8.5Hz, H Ar), 7.37–7.58 (m, 6H, HAr), 7.97–
8.00 (m, 1H, HAr), 8.16 (br d, 1H, J = 7.7 Hz, HAr), 8.34
(d, 1H, J = 8.3 Hz, HAr); 13C NMR (75MHz, CDCl 3): d
28.1 (3CH3), 47.8 (CH2), 83.8 (C), 117.6 (CH), 121.7 (C),
122.8 (CH), 126.0 (CH), 126.5(2CH), 126.6 (CH), 127.5
´
´
13. (a) Baudoin, O.; Cesario, M.; Guenard, D.; Gueritte, F. J.
Org. Chem. 2002, 67, 1199–1207; (b) Bremner, J. B.;
Sengpracha, W. Tetrahedron 2005, 61, 5489–5498.