M. L. Kantam et al. / Tetrahedron Letters 50 (2009) 4467–4469
4469
Table 3
reused for another cycle after vacuum drying. The centrifugate
was diluted with diethyl ether and the solvent was removed under
reduced pressure. Then it was subjected to column chromatogra-
phy to get the pure product. Isolated yield of ethyl-4-piperidinylac-
etate was 62%.
Insertion of diazoacetate into N–H bonds of amines using nano CuOa
Entry Amine
Product
Time
(h)
Yieldb
(%)
H1 NMR: 1.24–1.31 (t, 3H), 1.38–1.48 (m, 2H), 1.57–1.65 (m,
4H), 2.51 (t, 4H), 3.12 (d, 2H), 4.19 (q, 2H).
CO2C2H5
CO2C2H5
CO2C2H5
CO2C2H5
1
24
24
36
36
36
36
36
36
24
62,
58c
N
N
H
Acknowledgments
O
2
66
O
N
N
H
S.L. and J.Y. thank CSIR, New Delhi for the award of research fel-
lowships. Nanocrystalline metal oxide samples were obtained from
Nanoscale Materials Inc., Manhattan, KS 66502, USA.
Ph
Ph
Ph
3
54
N
NH
Ph
References and notes
nC4H9
nC4H9
nC4H9
1. (a) Bartoli, G.; Cimarelli, C.; Marcantoni, E.; Palmieri, G.; Petrini, M. J. Org. Chem.
1994, 59, 5328; (b) Wang, Y. F.; Izawa, T.; Kobayashi, S.; Ohno, M. J. Am. Chem.
Soc. 1982, 104, 6465; (c) Wabnitz, T. C.; Spencer, J. B. Chem. Eur. J. 2004, 10, 484;
(d) Liu, M.; Sibi, M. P. Tetrahetron 2002, 58, 7991.
2. (a) Hayashi, Y.; Rode, J. J.; Corey, E. J. J. Am. Chem. Soc. 1996, 118, 5502; (b) Eliel,
E. L.; He, X. J. Org. Chem. 1990, 55, 2114.
3. Srivastava, N.; Banik, B. K. J. Org. Chem. 2003, 68, 2109.
4. Vala, R.; Alam, M. M.; Adapa, S. R. Synlet 2003, 720.
5. Jenner, G. Tetrahedron Lett. 1995, 36, 233.
6. Matsubara, M.; Yoshioka, M.; Utimoto, K. Chem. Lett. 1994, 827.
7. Loh, T. P.; Wei, L. L. Synlett 1998, 975.
8. Xu, L. W.; Li, L.; Xia, C. G. Helve. Chim. Acta 2004, 87, 1522.
9. Fadini, L.; Tongi, A. Chem Commun. 2003, 30.
10. Azizi, N.; Saidi, M. R. Tetrahedron 2004, 60, 383.
11. Xu, L. W.; Li, J. W.; Xia, C. G.; Zhou, S. L.; Hu, X. X. Synlett 2003, 2425.
12. (a) Cabral, J.; Laszlo, P.; Mahe, L.; Montaufier, M. T.; Randriamahefa, S. L.
Tetrahedron Lett. 1989, 30, 3969; (b) Shaikh, N. S.; Despande, V. H.; Bedekar, A.
V. Tetrahedron 2001, 57, 9045.
13. Basu, B.; Das, P.; Hossain, I. Synlett 2004, 2630.
14. Bartoli, G.; Bartolacci, M.; Giuliani, A.; Marcantoni, E.; Massaccesi, M.;
Torregiani, E. J. Org. Chem. 2005, 70, 169.
15. (a) Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A. V. Chem. Lett. 2003, 988;
(b) Xu, L.-W.; Li, J.-W.; Zhou, S.-L.; Xia, C.-G. New J. Chem. 2004, 28, 183.
16. (a) Ye, T.; McKarvey, M. A. Chem. Rev. 1994, 94, 1091; (b) Doyle, M. P. Chem. Rev.
1986, 86, 919.
17. For pharmaceutical application of carbenoid chemistry, see: (a) Andreoli, P.;
Cainelli, G.; Panunzio, M.; Bandini, E.; Martelli, G.; Spunta, G. J. Org. Chem. 1991,
56, 5984; (b) Reider, P. J.; Grabowski, E. J. J. Tetrahedron Lett. 1982, 23, 2293; (c)
Ratcliffe, R. W.; Salzmann, T. N.; Christensen, B. G. Tetrahedron 1980, 21, 31; (d)
Karady, S.; Amato, J. S.; Reamer, R. A.; Weinstock, L. M. J. Am. Chem. Soc. 1981,
103, 6765; (e) Wentrup, C.; Winter, H. -W. J. Am. Chem. Soc. 1980, 102, 6161.
18. Yates, P. J. Am. Chem. Soc. 1952, 74, 5376.
19. (a) Saegusa, T.; Ito, Y.; Kobayashi, S.; Hirota, K.; Shimizu, T. Tetrahedron Lett.
1966, 7, 6131; (b) Nicoud, J. -F.; Kagan, H. B. Tetrahedron Lett. 1971, 12, 2065.
20. (a) Paulissen, R.; Hayez, E.; Hubert, A. J.; Teyssie, P. Tetrahedron Lett. 1974, 15,
607; (b) Osipov, S. N.; Sewald, N.; Kolomiets, A. F.; Fokin, A. V.; Berger, K.
Tetrahedron Lett. 1996, 37, 615; (c) Aller, E.; Buck, R. T.; Drysdale, M. J.; Ferris,
L.; Haigh, D.; Moody, C. J.; Pearson, N. D.; Sanghera, J. B. J. Chem. Soc., Perkin
Trans. 1996, 1, 2879; (d) Ferris, L.; Haigh, D.; Moody, C. J. J. Chem. Soc., Perkin
Trans. 1996, 1, 2885; (e) Bashford, K. E.; Cooper, A. L.; Kane, P. D.; Moody, C. J.
Chem. Soc., Perkin Trans. 2002, 1, 1672.
4
56
NH
N
nC4H9
CO2C2H5
5
52d
52d
60
HN
NH
N
N
C2H5O2C
CO2C2H5
CO2C2H5
N
6
7
8
NH2
CO2C2H5
NH2
NH2
NH
CO2C2H5
CO2C2H5
55d
51e
N
t
CO2 Bu
9
N
N
H
a
Reaction conditions: amine (1 mmol), EDA (1 mmol), nano CuO (10 mol %),
DCM (4 mL), room temperature.
b
Isolated yields.
Yield after third cycle.
2 mmol of EDA is used.
1 mmol tert-butyldiazoacetate is used as carbine source.
c
d
e
as the higher surface concentration of reactive sites. The catalyst is
used for three cycles with minimal loss of activity.
General experimental procedure for aza-Michael addition reaction:
In an oven dried 10 mL Schlenk flask, a mixture of dibenzylamine
(1 mmol), methyl acrylate (1.2 mmol), and nano CuO (10 mol %)
in methanol (4 mL) was maintained at room temperature under
vigorous stirring for appropriate time. After the completion of
the reaction, monitored by TLC, the reaction mixture was centri-
fuged and washed with ethyl acetate to recover the catalyst for re-
use. The combined ethyl acetate extracts were concentrated in
vacuo, and the resulting product was directly charged on silica
gel column to obtain the product. Isolated yield of methyl-3-(dib-
enzylamino) propionate was 74%.
21. Galardon, E.; Maux, P. l.; Simonneaux, G. J. Chem. Soc., Perkin Trans. 1 1997,
2455.
22. Morilla, M. E.; Diaz-Requejo, M. M.; Belderrain, T. R.; Nicasio, M. C.;
Trofimenko, S.; Perez, P. J. Chem. Commun. 2002, 2998.
23. Bachmann, S.; Fielenbach, D.; Jorgensen, K. A. Org. Biomol. Chem. 2004, 2, 3044.
24. (a) Itoh, H.; Utamapanya, S.; Stark, J. V.; Klabunde, K. J.; Schlup, J. R. Chem.
Mater. 1993, 5, 71; (b) Jiang, Y.; Decker, C.; Mohs, C.; Klabunde, K. J. J. Catal.
1998, 180, 24; (c) Guzman, J.; Gates, B. C. Nano Lett. 2001, 1, 689; (d) Choudary,
B. M.; Mulukutla, R. S.; Klabunde, K. J. J. Am. Chem. Soc. 2003, 125, 2020; (e) Shi,
F.; Tse, M. K.; Pohl, M.-M.; Brückner, A.; Zhang, S.; Beller, M. Angew. Chem., Int.
Ed. 2007, 46, 8866; (f) Polshettiwar, V.; Varma, R. S. Chem. Eur. J. 2009, 15, 1582;
(g) Polshettiwar, V.; Varma, R. S. Org. Biomol. Chem. 2009, 7, 37; (h)
Polshettiwar, V.; Baruwati, B.; Varma, R. S. Green Chem. 2009, 11, 127; (i)
Polshettiwar, V.; Baruwati, B.; Varma, R. S. Chem. Commun. 2009, 1837.
H1 NMR: 2.48–2.58 (t, 2H), 2.80–2.92 (t, 2H), 3.62 (s, 3H), 3.73
(s, 4H), 7.20–7.44 (m, 10H).
´
´
25. (a) Larsson, P.; Andersson, A. J. Catal. 1998, 179, 72; (b) Chikan, V.; Molnar, Ä.;
Bala´zsik, K. J. Catal. 1999, 184, 134; (c) Raveau, B.; Michel, C.; Herview, M.;
Groult, D. Crystal Chemistry of High-Tc Superconducting Copper Oxides; Springer:
Berlin, 1991; (d) Poole, C. P.; Datta, T.; Farach, H. A.; Rigney, M. M.; Sanders, C.
R. Copper Oxide Superconductors; John Wiley & Sons: NewYork, 1988.
General experimental for insertion of diazo compounds into
amines: Nano CuO (10 mol %) in DCM (4 mL) was placed in an oven
dried 10 mL Schlenk flask, at room temperature under N2 atmo-
sphere. Piperidine (1 mmol) was added. To the reaction mixture
ethyl diazoacetate (1 mmol) was added dropwise for 10 min and
stirring was continued. After the completion of the reaction, as
monitored by TLC, the reaction mixture was centrifuged to sepa-
rate the catalyst. The catalyst was washed with diethyl ether and
26. (a) Choudary, B. M.; Ranganath, K. V. S.; Yadav, J.; Kantam, M. L. Tetrahedron Lett.
2005, 46, 1369; (b) Kantam, M. L.; Laha, S.; Yadav, J.; Choudary, B. M.; Sreedhar, B.
Adv. Synth. Catal. 2006, 348, 867;(c) Kantam, M. L.;Shiva Kumar, K. B.; Sridhar, Ch.
Adv. Synth. Catal. 2005, 347, 1212; (d) Choudary, B. M.; Ranganath, K. V. S.; Pal, U.;
Kantam, M. L.; Sreedhar, B. J. Am. Chem. Soc. 2005, 127, 13167.