634
A. Sharma et al. / Tetrahedron Letters 48 (2007) 633–634
R
R
R
OH
R
R
R
O
O
O
i
iii
RO
iv
(CH2)14CH3
O
(CH2)14CH3
O
(CH2)14CH3
OR1
O
+
CHO
OTPS
OH
3a
2
5 R = H
3b R1 = H
ii
6 R = TBS
4 R1 = TPS
R,R = cyclohexylidene
N3
NH2
v
vi
TBSO
(CH2)14CH3
OTPS
HO
(CH2)14CH3
OH
1
7
Scheme 1. Reagents and conditions: (i) CH3(CH2)14MgBr, THF, rt (86%); (ii) tert-butyldiphenylsilyl chloride (TPSCl), imidazole, CH2Cl2, rt (93%);
(iii) CuCl2ÆH2O, MeOH, D (81%); (iv) tert-butyldimethylsilyl chloride (TBSCl), imidazole, CH2Cl2, rt (88%); (v) Ph3P, (PhO)2P(O)N3, DEAD, THF,
0 to rt (84%); (vi) LAH, diethyl ether, reflux (77%).
R
R
OH
R
R
O
iii
O
ii
i
HO
(CH2)14CH3
O
(CH2)14CH3
OH
O
CHO
OH
8
2
3b
R,R = cyclohexylidene
N3
OH
(CH2)14CH3
(CH2)14CH3
O
O
H
v
1
O
O
H
iv
10
MeO
9
MeO
Scheme 2. Reagents and conditions: (i) CH3(CH2)14Br, Li, hexane, À40 °C (89%); (ii) MeOH, HCl, rt (91%); (iii) p-anisaldehyde, HCl, rt (81%); (iv)
p-TsCl, pyridine, CH2Cl2, À5 °C, NaN3, DMF, D (75%); (v) H2, 10% Pd–C, EtOH, rt, aqueous HCl (72%).
(b) Masui, M.; Shioiri, T. Tetrahedron Lett. 1998, 39,
5199; (c) Shibuya, H.; Kawashima, K.; Narita, N.; Ikeda,
M.; Kitagawa, I. Chem. Pharm. Bull. 1992, 40, 1154; (d)
Villard, R.; Fotiadu, F.; Buono, G. Tetrahedron: Asym-
metry 1998, 9, 507.
limitations, especially for the generation of the enantio-
mer. Further, it required a laborious standardization of
the Henry reaction for the synthesis of the required dia-
stereomeric nitro carbinol, the precursor for 1. In com-
parison, the present method is operationally simple
and the reagents and starting material are readily avail-
able. The starting aldehyde 2 can be easily prepared in
appreciable amounts from the inexpensive (D)-mannitol.
We have standardized its synthesis on a 170 g scale and
used it for the syntheses of various bioactive com-
pounds.9a–c Both the Grignard or alkyllithium reaction
and azidation are amenable to scale-up. The second pro-
cedure involving five synthetic steps is reproducible and
provided 1 in ꢀ35–37% overall yield starting from 2.
Given that (S)-2 is also available easily from vitamin C,10
the flexibility of our method would allow the prepara-
tion of any desired isomer of 1 with an equal efficiency.
5. (a) Grob, C. A.; Jenny, E. F.; Utzinger, H. Helv. Chim.
Acta 1951, 34, 2249; (b) Egerton, M. J.; Gregory, G. I.;
Malkin, T. J. Chem. Soc. 1952, 2272; (c) Grob, C. A.;
Jenny, E. F. Helv. Chim. Acta 1952, 35, 2106; (d) Zhang,
L. H.; Oniciu, D. C.; Mueller, R.; McCosar, B. H.; Popa,
E. ARKIVOC 2005, 285.
6. (a) Chattopadhyay, A.; Mamdapur, V. R. J. Org. Chem.
1995, 60, 585; (b) Sharma, A.; Chattopadhyay, S. Tetra-
hedron: Asymmetry 1999, 10, 883; (c) Sharma, A.;
Chattopadhyay, S. Enantiomer 2000, 5, 175.
7. (a) Bastian, G.; Bessodes, M.; Panzica, R. P.; Abushanab,
E.; Chen, S. F.; Stoeckler, J. D.; Parks, R. E., Jr. J. Med.
Chem. 1981, 24, 1385; (b) Baker, D. C.; Hawkins, L. D.
J. Org. Chem. 1982, 47, 2179.
8. All the compounds were characterized by their optical
rotation, spectral (IR and 1H, 13C NMR) and micro-
analytical data.
References and notes
9. (a) Salaskar, A.; Sharma, A.; Chattopadhyay, S. Tetra-
hedron: Asymmetry 2006, 17, 325; (b) Salaskar, A. A.;
Mayekar, N. V.; Sharma, A.; Nayak, S. K.; Chattopad-
hyay, A.; Chattopadhyay, S. Synthesis 2005, 2777; (c)
Roy, S.; Sharma, A.; Chattopadhyay, N.; Chattopadhyay,
S. Tetrahedron Lett. 2006, 47, 7067.
1. USP Dictionary of USAN and International Drug Names,
US Pharmacopoeia: Rockville, Maryland, 2000; p 636.
2. Hannun, Y. A.; Bell, R. M. Science 1989, 243, 500.
3. Schwartz, G. K.; Jiang, J.; Kelsen, D.; Albino, A. P.
J. Natl. Cancer Inst. 1993, 85, 402.
10. Benagila, M.; Caporale, M.; Puglisi, A. Enantiomer 2002,
7, 383.
4. (a) Shibasaki, M.; Tokunaga, T.; Watanabe, S.; Suzuki,
T.; Itoh, N.; Shibasaki, M. J. Org. Chem. 1995, 60, 7388;